Natural Language Processing with Deep Learning CS224N/Ling284

Christopher Manning

Lecture 9: Pretraining

Adapted from slides by Anna Goldie, John Hewitt, Tatsunori Hashimoto

The pretraining revolution

Pretraining has had a major, tangible impact on how well NLP systems work

Pretraining – scaling unsupervised learning on the internet

Key ideas in pretraining

- Make sure your model can process large-scale, diverse datasets
- Don't use labeled data (otherwise you can't scale!)
- Compute-aware scaling

Lecture Plan

- 1. A brief note on subword modeling
- 2. Motivating model pretraining from word embeddings
- 3. Model pretraining three ways
 - 1. Decoders
 - 2. Encoders
 - 3. Encoder-Decoders
- 4. What do we think pretraining is teaching?

Reminders and notes:

Ass 3 is due and Ass 4 is out today! Ass 4 covers lecture 8 and lecture 9 (today)! Project proposal is due Thursday. Get it in on time (I beseech you) Rest of the quarter: This week and next, more LLMs; then topics and invited speakers

Word structure and subword models

Let's take a look at the assumptions we've made about a language's vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set. All *novel* words seen at test time are mapped to a single UNK.

 \sim

Word structure and subword models

Finite vocabulary assumptions make even *less* sense in many languages other than English

- Many languages exhibit complex morphology, or word structure.
 - The effect is many more word types, each occurring fewer times.

Example: Swahili verbs can have hundreds of conjugations, each encoding a wide variety of information. (Tense, mood, definiteness, negation, information about the object, ++)

Here's a small fraction of the conjugations for *ambia* – to tell.

Conjug	ation of -	ambia																[less 🔺]
	Non-finite forms																	
<u> </u>					Negative													
Infinitive kuambia kutoambia kutoambia																		
Bositive form Cingulat Plural																		
		mperativ	e					ambia							ambieni			
		Habitual	•					annora			hua	mbia			ambiom			
								Comp	lex finite	forms								
		Pers	sons		Pers	ons /						Classes						
Polarity	1	st	2	nd	3rd/	M-wa	М-	mi	N	la	ki	-vi		N	U	Ku	Pa	Mu
-	Sa.	PI.	Sa.	PI.	Sq. / 1	Pl. / 2	3	4	5	6	7	8	9	10	11 / 14	15/17	16	18
	- 3-		- 3-		- 3			F	Past			_						[less ▲]
Positive	niliambia naliambia	tuliambia twaliambia	uliambia waliambia	mliambia mwaliambia	aliambia	waliambia	uliambia	iliambia	liliambia	yaliambia	kiliambia	viliambia	iliambia	ziliambia	uliambia	kuliambia	paliambia	muliambia
Negative	sikuambia	hatukuambia	hukuambia	hamkuambia	hakuambia	hawakuambi a	haukuambia	haikuambia	halikuambia	hayakuambi a	hakikuambia	havikuambia	haikuambia	hazikuambia	haukuambia	hakukuambi a	hapakuambi a	hamukuambi a
	Present liess Al																	
Positive	ninaambia naambia	tunaambia	unaambia	mnaambia	anaambia	wanaambia	unaambia	inaambia	linaambia	yanaambia	kinaambia	vinaambia	inaambia	zinaambia	unaambia	kunaambia	panaambia	munaambia
Negative	siambii	hatuambii	huambii	hamambii	haambii	hawaambii	hauambii	haiambii	haliambii	hayaambii	hakiambii	haviambii	haiambii	haziambii	hauambii	hakuambii	hapaambii	hamuambii
Future [less]																		
Positive	nitaambia	tutaambia	utaambia	mtaambia	ataambia	wataambia	utaambia	itaambia	litaambia	yataambia	kitaambia	vitaambia	itaambia	zitaambia	utaambia	kutaambia	pataambia	mutaambia
Negative	sitaambia	hatutaambia	hutaambia	hamtaambia	hataambia	hawataambi a	hautaambia	haitaambia	halitaambia	hayataambia	hakitaambia	havitaambia	haitaambia	hazitaambia	hautaambia	hakutaambia	hapataambia	hamutaambi a
								Subj	unctive									[less A]
Positive	niambie	tuambie	uambie	mambie	aambie	waambie	uambie	iambie	liambie	yaambie	kiambie	viambie	iambie	ziambie	uambie	kuambie	paambie	muambie
Negative	nisiambie	tusiambie	usiambie	msiambie	asiambie	wasiambie	usiambie	Islamble	lisiambie	yasiambie	kisiambie	visiambie	isiambie	zisiambie	usiambie	kusiambie	pasiambie	musiambie
Positivo	ningoambia	tungoambia	ungoambia	mngoamhia	angoamhia	wangoambia	ungoambia	ingoambia	lingoambia	vangoambia	kingoambia	vingoambia	ingoamhia	zingoambia	ungoambia	kungoambia	nangoamhia	[Iess]
1 Usitive	iningeaniola	tusingeambi	ungeambia	msingeambi	angeambia	wasingeamb	ungeambia	ingeambia	ingeambia	vasingeambi	kisingeambi	visingeambi	ingeambia	zisingeambi	ungeanibia	kusingeambi	parigeambi	musingeamb
Negative	nisingeambi	а	usingeambia	a	asingeambia	ia	haungeambla	isingeambia	halingeambla	a	a	a	isingeambia	а	baungeambia	a	a	ia
nogutito	singeambia	hatungeamb ia	hungeambia	hamngeambi a	hangeambia	hawangeam bia	a	haingeambia	a	hayangeamb ia	hakingeambi a	havingeambi a	haingeambia	hazingeambi a	a	hakungeamb ia	hapangeam bia	hamungeam bia
								Past C	onditiona	al								[less]
Positive	ningaliambia	tungaliambia	ungaliambia	mngaliambia	angaliambia	wangaliambi a	ungaliambia	ingaliambia	lingaliambia	yangaliambi a	kingaliambia	vingaliambia	ingaliambia	zingaliambia	ungaliambia	kungaliambi a	pangaliambi a	mungaliambi a
	nisingaliamb	tusingaliamb	usingaliambi	msingaliamb	asingaliambi	wasingaliam	usingaliambi	isingaliambia	lisingaliambi	yasingaliam	kisingaliambi	visingaliambi	isingaliambia	zisingaliambi	usingaliambi	kusingaliam	pasingaliam	musingaliam
Negative	ia	ia hatungaliam	a hungaliamhi	ia hamngaliam	a hangaliamhi	bia	a haungaliamh	haingaliambi	a halingaliamh	bia	a hakingaliam	a havingaliam	haingaliambi	a hazingaliam	a haungaliamh	bia bakungaliam	bia hanangaliam	bia hamungalia
	singaliambia	bia	a	bia	a	mbia	la	а	ia	bia	bia	bia	а	bia	ia	bia	bia	mbia
							Con	ditional (Contrary	to Fact								[less]
Positive	ningeliambia	tungeliambia	ungeliambia	mngeliambia	angeliambia	wangeliambi a	ungeliambia	ingeliambia	lingeliambia	yangeliambi a	kingeliambia	vingeliambia	ingeliambia	zingeliambia	ungeliambia	kungeliambi a	pangeliambi a	mungeliambi a
								Gr	omic									[less]
Positive	naambia	twaambia	waambia	mwaambia	aambia	waambia	waambia	yaambia	laambia	yaambia	chaambia	vyaambia	yaambia	zaambia	waambia	kwaambia	paambia	mwaambia

The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about structure below the word level. (Parts of words, characters, bytes.)

- The dominant modern paradigm is to learn a vocabulary of **parts of words (subword tokens).**
- At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

- 1. Start with a vocabulary containing only characters and an "end-of-word" symbol.
- 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword.
- 3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now similar methods (WordPiece, SentencePiece) are used in pretrained models, like BERT, GPT.

Byte Pair Encoding (BPE) [Sennrich et al. 2016]

3

wid est

Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

 \sim

9

Words in writing systems

Writing systems vary in how they represent words – or don't

- No word segmentation: 安理会认可利比亚问题柏林峰会成果
- Words (mainly) segmented: *This is a sentence with words.*
 - Clitics/pronouns/agreement?
 - Separated Je vous ai apporté des bonbons
 - so+said+we+it = ف+ قال+ نا+ ها = فقلناها so+said+we+it
 - Compounds?
 - Separated life insurance company employee
 - Joined Lebensversicherungsgesellschaftsangestellter

Below the word in writing systems

Human language writing systems aren't one thing!

- Phonemic (maybe digraphs) jiyawu ngabulu
- Fossilized phonemic
- Syllabic/moraic
- Ideographic (syllabic)
- Combination of the above

thorough failure ンシイペレイ⁵b 去年太空船二号坠毁 インド洋の島 Wambaya English Inuktitut Chinese Japanese

Outline

- 1. A brief note on subword modeling
- 2. Motivating model pretraining from word embeddings
- 3. Model pretraining three ways
 - 1. Encoders
 - 2. Encoder-Decoders
 - 3. Decoders
- 4. What do we think pretraining is teaching?

Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:

"You shall know a word by the company it keeps" (J. R. Firth 1957: 11)

This quote is a summary of **distributional semantics**, and motivated **word2vec**. But:

"... the complete meaning of a word is always contextual, and no study of meaning apart from a complete context can be taken seriously." (J. R. Firth 1935)

Consider I record the record: the two instances of record mean different things.

[Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote.]

Where we were: pretrained word embeddings

Circa 2015:

- Start with pretrained word embeddings (no context!)
- Learn how to incorporate context in an LSTM or Transformer while training on the task.

Some issues to think about:

- The training data we have for our downstream task (like question answering) must be sufficient to teach all contextual aspects of language.
- Most of the parameters in our network are randomly initialized!

[Recall, *movie* gets the same word embedding, no matter what sentence it shows up in]

Where we're going: pretraining whole models

In modern NLP:

- All (or almost all) parameters in NLP networks are initialized via pretraining.
- Pretraining methods hide parts of the input from the model, and train the model to reconstruct those parts.
- This has been exceptionally effective at building strong:
 - representations of language
 - **parameter initializations** for strong NLP models.
 - **Probability distributions** over language that we can sample from

[This model has learned how to represent entire sentences through pretraining]

Stanford University is located in _____, California.

I put _____ fork down on the table.

The woman walked across the street, checking for traffic over ____ shoulder.

I went to the ocean to see the fish, turtles, seals, and _____.

Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink. The movie was ____.

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny. Zuko left the _____.

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

Pretraining through language modeling [Dai and Le, 2015]

Recall the **language modeling** task:

- Model $p_{\theta}(w_t|w_{1:t-1})$, the probability distribution over words given their past contexts.
- There's lots of data for this! (In English.)

Pretraining through language modeling:

- Train a neural network to perform language modeling on a large amount of text.
- Save the network parameters.

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a "training neural nets" perspective?

- Pretraining provides parameters $\hat{\theta}$ by approximating $\min_{\theta} \mathcal{L}_{\text{pretrain}}(\theta)$.
 - (The pretraining loss.)
- Then, finetuning approximates $\min_{\theta} \mathcal{L}_{\text{finetune}}(\theta)$, starting at $\hat{\theta}$.
 - (The finetuning loss)
- The pretraining may matter because stochastic gradient descent sticks (relatively) close to $\hat{\theta}$ during finetuning.
 - So, maybe the finetuning local minima near $\hat{\theta}$ tend to generalize well!
 - And/or, maybe the gradients of finetuning loss near $\hat{\theta}$ propagate nicely!

Where does this data come from?

Model	Training Data
BERT	BookCorpus, English Wikipedia
GPT-1	BookCorpus
GPT-3	CommonCrawl, WebText, English Wikipedia, and 2 book databases ("Books 1" and "Books 2")
GPT- 3.5+	Undisclosed

Bookcorpus ... what's that?

Scraped ebooks from the internet – highly controversial

Fair use and other concerns

Google swallows 11,000 novels to improve AI's conversation

As writers learn that tech giant has processed their work without permission, the Authors Guild condemns 'blatantly commercial use of expressive authorship'

'It doesn't harm the authors' ... Google's headquarters in Mountain View, California. Photograph: Marcio Jose Sanchez/AP

Arts and Humanities, Law, Regulation, and Policy, Machine Learning Reexamining "Fair Use" in the Age of Al

Generative AI claims to produce new language and images, but when those ideas are based on copyrighted material, who gets the credit? A new paper from Stanford University looks for answers.

Jun 5, 2023 | Andrew Myers 🎽 🕇 🖸 in 🎯

Lecture Plan

- 1. A brief note on subword modeling
- 2. Motivating model pretraining from word embeddings
- 3. Model pretraining three ways
 - 1. Encoders
 - 2. Encoder-Decoders
 - 3. Decoders
- 4. What do we think pretraining is teaching?

Pretraining for three types of architectures

Decoders

The neural architecture influences the type of pretraining, and natural use cases.

- Gets bidirectional context can condition on future!
- How do we train them to build strong representations?

- Good parts of decoders and encoders?
- What's the best way to pretrain them?

- Language models! What we've seen so far.
- Nice to generate from; can't condition on future words

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

Encoders

Encoder-

- Gets bidirectional context can condition on future!
- How do we train them to build strong representations?

- Good parts of decoders and encoders?
- **Decoders** What's the best way to pretrain them?

- Language models! What we've seen so far.
 - Nice to generate from; can't condition on future words

So far, we've looked at language model pretraining. But **encoders get bidirectional context,** so we can't do language modeling!

Idea: replace some fraction of words in the input with a special [MASK] token; predict these words.

$$h_1, \dots, h_T = \text{Encoder}(w_1, \dots, w_T)$$

 $y_i \sim Aw_i + b$

Only add loss terms from words that are "masked out." If \tilde{x} is the masked version of x, we're learning $p_{\theta}(x|\tilde{x})$. Called **Masked LM**.

[Devlin et al., 2018]

Devlin et al., 2018 proposed the "Masked LM" objective and **released the weights of a pretrained Transformer**, a model they labeled BERT.

Some more details about Masked LM for BERT:

- Predict a random 15% of (sub)word tokens.
 - Replace input word with [MASK] 80% of the time
 - Replace input word with a random token 10% of the time
 - Leave input word unchanged 10% of the time (but still predict it!)
- Why? Doesn't let the model get complacent and not build strong representations of non-masked words. (No masks are seen at fine-tuning time!)

[Devlin et al., 2018]

• The pretraining input to BERT was two separate contiguous chunks of text:

Input	[CLS]	my	dog	is	cute	[SEP]	he	likes	play	##ing	[SEP]
Token Embeddings	E _[CLS]	E _{my}	E _{dog}	E _{is}	E _{cute}	E _[SEP]	E _{he}	Elikes	E _{play}	E _{##ing}	E _[SEP]
Segment	+ E,	+	+ E,	+ E,	+ E,	+ E,	+ E _n	+ E ₂	+ E _n	+ E _n	+ E _n
Embeddings	A	A	A	▲	A	A	+	+	+	+	+
Position Embeddings	E	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀

- BERT was trained to predict whether one chunk follows the other or is randomly sampled.
 - Later work has argued this "next sentence prediction" is not necessary.

Details about BERT

- Two models were released:
 - BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
 - BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.
- Trained on:
 - BooksCorpus (800 million words)
 - English Wikipedia (2,500 million words)
- Pretraining is expensive and impractical on a single GPU.
 - BERT was pretrained with 64 TPU chips for a total of 4 days.
 - (TPUs are special tensor operation acceleration hardware)
- Finetuning is practical and common on a single GPU
 - "Pretrain once, finetune many times."

BERT was massively popular and hugely versatile; finetuning BERT led to new state-ofthe-art results on a broad range of tasks.

- QQP: Quora Question Pairs (detect paraphrase questions)
- QNLI: natural language inference over question answering data
- SST-2: sentiment analysis

- **CoLA**: corpus of linguistic acceptability (detect whether sentences are grammatical.)
- STS-B: semantic textual similarity
- MRPC: microsoft paraphrase corpus
- **RTE**: a small natural language inference corpus

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Limitations of pretrained encoders

Those results looked great! Why not use pretrained encoders for everything?

If your task involves generating sequences, consider using a pretrained decoder; BERT and other pretrained encoders don't naturally lead to nice autoregressive (1-word-at-a-time) generation methods.

Extensions of BERT

You'll see a lot of BERT variants like RoBERTa, SpanBERT, +++

Some generally accepted improvements to the BERT pretraining formula:

- RoBERTa: mainly just train BERT for longer and remove next sentence prediction!
- SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

Extensions of BERT

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining even when not changing the underlying Transformer encoder.

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERTLARGE						
with BOOKS + WIKI	13GB	256	1M	90.9/81.8	86.6	93.7

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

Decoders

- Gets bidirectional context can condition on future!
- How do we train them to build strong representations?

- Good parts of decoders and encoders?
- What's the best way to pretrain them?

- Language models! What we've seen so far.
- Nice to generate from; can't condition on future words

For **encoder-decoders**, we could do something like **language modeling**, but where a prefix of every input is provided to the encoder and is not predicted.

$$\begin{aligned} h_1, \dots, h_T &= \text{Encoder}(w_1, \dots, w_T) \\ h_{T+1}, \dots, h_2 &= Decoder(w_1, \dots, w_T, h_1, \dots, h_T) \\ y_i &\sim Ah_i + b, i > T \end{aligned}$$

The **encoder** portion benefits from bidirectional context; the **decoder** portion is used to train the whole model through language modeling.

[Raffel et al., 2018]

What <u>Raffel et al., 2018</u> found to work best was **span corruption.** Their model: **T5**.

Inputs

Replace different-length spans from the input with unique placeholders; decode out the spans that were removed!

Original text

Thank you for inviting me to your party last week.

This is implemented in text preprocessing: it's still an objective that looks like language modeling at the decoder side.

<u>Raffel et al., 2018</u> found encoder-decoders to work better than decoders for their tasks, and span corruption (denoising) to work better than language modeling.

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	M	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39
Encoder-decoder	LM	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	$\mathbf{L}\mathbf{M}$	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	$\mathbf{L}\mathbf{M}$	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	$\mathbf{L}\mathbf{M}$	P	M	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	$\mathbf{L}\mathbf{M}$	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

A fascinating property of T5: it can be finetuned to answer a wide range of questions, retrieving knowledge from its parameters.

NQ: Natural Questions WQ: WebQuestions TQA: Trivia QA

All "open-domain" versions

ty a	Pre-training Fine-tuning When was Frankl Roosevelt bor	in D.	£	resident I Roosevelt in Janua	Franklin D. t was born ary 1882.
		NQ	WQ	T	QA
				dev	test
ns	Karpukhin et al. (2020)	41.5	42.4	57.9	_
	T5.1.1-Base	25.7	28.2	24.2	30.6 220 million params
	T5.1.1-Large	27.3	29.5	28.5	37.2 770 million params
	T5.1.1-XL	29.5	32.4	36.0	45.1 3 billion params
	T5.1.1-XXL	32.8	35.6	42.9	52.5 11 billion params
	T5.1.1-XXL + SSM	35.2	42.8	51.9	61.6

[Raffel et al., 2018]

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

- Gets bidirectional context can condition on future!
- How do we train them to build strong representations?

- Good parts of decoders and encoders?
- What's the best way to pretrain them?

Decoders

- Language models! What we've seen so far.
- Nice to generate from; can't condition on future words.
- All the biggest pretrained models are Decoders.

Pretraining decoders

When using language model pretrained decoders, we can ignore that they were trained to model $p(w_t|w_{1:t-1})$.

We can finetune them by training a classifier on the last word's hidden state.

> $h_1, \dots, h_T = \text{Decoder}(w_1, \dots, w_T)$ $y \sim Ah_T + b$

Where A and b are randomly initialized and specified by the downstream task.

Gradients backpropagate through the whole network.

[Note how the linear layer hasn't been pretrained and must be learned from scratch.]

Pretraining decoders

It's natural to pretrain decoders as language models and then use them as generators, finetuning their $p_{\theta}(w_t|w_{1:t-1})!$

This is helpful in tasks **where the output is a sequence** with a vocabulary like that at pretraining time!

- Dialogue (context=dialogue history)
- Summarization (context=document)

$$h_1, \dots, h_T = \text{Decoder}(w_1, \dots, w_T)$$

 $w_t \sim Ah_{t-1} + b$

Where *A*, *b* were pretrained in the language model!

[Note how the linear layer has been pretrained.]

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

2018's GPT was a big success in pretraining a decoder!

- Transformer decoder with 12 layers, 117M parameters.
- 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
- Byte-pair encoding with 40,000 merges
- Trained on BooksCorpus: over 7000 unique books.
 - Contains long spans of contiguous text, for learning long-distance dependencies.
- The acronym "GPT" never showed up in the original paper; it could stand for "Generative PreTraining" or "Generative Pretrained Transformer"

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as *entailing/contradictory/neutral* Premise: *The man is in the doorway* Hypothesis: *The person is near the door*

Radford et al., 2018 evaluate on natural language inference. Here's roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

GPT results on various natural language inference datasets.

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	89.3	-	-	-
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	80.6	80.1	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

Increasingly convincing generations (GPT2) [Radford et al., 2018]

We mentioned how pretrained decoders can be used **in their capacities as language models. GPT-2,** a larger version (1.5B) of GPT trained on more data, was shown to produce relatively convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

GPT-2 language model output (2019)

PROMPT (HUMAN-WRITTEN)

MODEL COMPLETION

A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts are unknown.

The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal Railroad Administration to find the thief.

"The theft of this nuclear material will have significant negative consequences on public and environmental health, our workforce and the economy of our nation," said Tom Hicks, the U.S. Energy Secretary, in a statement. "Our top priority is to secure the theft and ensure it doesn't happen again."

The stolen material was taken from the University of Cincinnati's Research Triangle Park nuclear research site, according to a news release from Department officials.

GPT-3, In-context learning, and very large models

So far, we've interacted with pretrained models in two ways:

- Sample from the distributions they define (maybe providing a prompt)
- Fine-tune them on a task we care about and take their predictions.

Very large language models seem to perform some kind of learning **without gradient steps** simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters. **GPT-3 has 175 billion parameters.**

ChatGPT/GPT-4/GPT-3.5 Turbo introduced a further instruction-tuning idea that we cover next lecture

GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning **without gradient steps** simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):

" thanks -> merci hello -> bonjour mint -> menthe otter -> "

Output (conditional generations):

loutre..."

GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning **without gradient steps** simply from examples you provide within their contexts.

Why scale? Scaling laws

• Empirical observation: scaling up models leads to reliable gains in perplexity

Scaling can help identify model size – data tradeoffs

• Modern observation: train a big model that's not fully converged.

Scaling laws for many other interesting architecture decisions

• Predictable scaling helps us make intelligent decisions about architectures etc.

Scaling Efficiency: how do we best use our compute

GPT-3 was **175B parameters** and trained on **300B** tokens of text. Roughly, the cost of training a large transformer scales as **parameters*tokens** Did OpenAI strike the right parameter-token data to get the best model? No.

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

This 70B parameter model is better than the much larger other models!

Outline

- 1. A brief note on subword modeling
- 2. Motivating model pretraining from word embeddings
- 3. Model pretraining three ways
 - 1. Encoders
 - 2. Encoder-Decoders
 - 3. Decoders
- 4. What do we think pretraining is teaching?

What kinds of things does pretraining teach?

There's increasing evidence that pretrained models learn a wide variety of things about the statistical properties of language. Taking our examples from the start of class:

- Stanford University is located in _____, California. [Trivia]
- I put _____ fork down on the table. [syntax]
- The woman walked across the street, checking for traffic over _____ shoulder. [coreference]
- *I went to the ocean to see the fish, turtles, seals, and*_____. [lexical semantics/topic]
- Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink. The movie was ____. [sentiment]
- Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny. Zuko left the _____. [some reasoning – this is harder]
- I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ [some basic arithmetic; they don't learn the Fibonacci sequence]
- Models also learn and can exacerbate racism, sexism, all manner of bad biases.

Sometimes it also memorizes copyrighted material

AI Art Generators Spark Multiple Copyright Lawsuits

Getty and a trio of artists sued AI art generators in separate suits accusing the companies of copyright infringement for pilfering their works.

BY WINSTON CHO 💽 JANUARY 17, 2023 4:10PM

Anthropic fires back at music publishers' Al copyright lawsuit

By **Blake Brittain** January 17, 2024 3:30 PM PST · Updated 19 days ago

🛛 🗛 <

Insights from the Pending Copilot Class Action Lawsuit

October 4, 2023 Bloomberg Law By Daniel R. Mello, Jr.; Jenevieve J. Maerker; Matthew C. Berntsen; Ming-Tao Yang

GitHub Inc. offers a cloud-based platform that is popular among many software programmers for hosting and sharing source code, and collaborating on source code drafting. GitHub's artificial

The Times Sues OpenAI and Microsoft Over A.I. Use of Copyrighted Work

Millions of articles from The New York Times were used to train chatbots that now compete with it, the lawsuit said.

Sometimes it learns some things we don't want..

• *Membership inference* lets you recover parts of the training data

• Sometimes this training data is semi-private material from the web (addresses, emails)

 It learns the prejudices and biases of human beings who write online

Three types of architectures for pretraining

The neural architecture influences the type of pretraining, and natural use cases.

