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Transformers: Is Attention All We Need?

4

• Last lecture, we learned that attention dramatically improves the performance of 
recurrent neural networks.

• Today, we will take this one step further and ask Is Attention All We Need?



Transformers: Is Attention All We Need?
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• Last lecture, we learned that attention dramatically improves the performance of 
recurrent neural networks.

• Today, we will take this one step further and ask Is Attention All We Need?

• Spoiler: Not Quite!



Transformers Have Revolutionized the Field of NLP

6

• By the end of this lecture, you will deeply understand the neural architecture that 
underpins virtually every state-of-the-art NLP model today!

[Vaswani et al., 2017]
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Great Results with Transformers: Machine Translation

[Vaswani et al., 2017]

Not just better Machine 
Translation BLEU scores

Also more efficient to 
train!

First, Machine Translation results from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]7



Great Results with Transformers: SuperGLUE

[Wang et al., 2019]

Not just better Machine 
Translation BLEU scores

Also more efficient to 
train!

[Test sets: SuperGLUE Leaderboard Version: 2.0]8

SuperGLUE is a suite of challenging NLP tasks, including question-answering, word sense 
disambiguation, coreference resolution, and natural language inference.



Great Results with Transformers: Rise of Large Language Models!
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Today, Transformer-based models dominate LMSYS Chatbot Arena Leaderboard!

[Chiang et al., 2024]



Transformers Even Show Promise Outside of NLP
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Transformers Even Show Promise Outside of NLP
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Protein Folding

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2


Transformers Even Show Promise Outside of NLP
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Protein Folding

Image Classification
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms 
ResNet-based baselines with substantially less compute.

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2


Transformers Even Show Promise Outside of NLP
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Protein Folding

Image Classification
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms 
ResNet-based baselines with substantially less compute.

ML for Systems
[Zhou et al. 2020]: A Transformer-based 
compiler model (GO-one) speeds up a 
Transformer model!

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2


Scaling Laws: Are Transformers All We Need?
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• With Transformers, language modeling performance improves smoothly as we increase 
model size, training data, and compute resources in tandem.

• This power-law relationship has been observed over multiple orders of magnitude with 
no sign of slowing!

• If we keep scaling up these models (with no change to the architecture), could they 
eventually match or exceed human-level performance?

[Kaplan et al., 2020]

https://arxiv.org/pdf/2001.08361.pdf


Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models
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4. Drawbacks and Variants of Transformers
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As of last lecture: recurrent models for (most) NLP!

• Circa 2016, the de facto strategy in NLP is to 
encode sentences with a bidirectional LSTM:
(for example, the source sentence in a translation) 
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• Define your output (parse, sentence, 
summary) as a sequence, and use an LSTM to 
generate it.

• Use attention to allow flexible access to 
memory



Why Move Beyond Recurrence?
Motivation for Transformer Architecture
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The Transformers authors had 3 desirata when designing this architecture:

1. Minimize (or at least not increase) computational complexity per layer.

2. Minimize path length between any pair of words to facilitate learning of long-range 
dependencies.

3. Maximize the amount of computation that can be parallelized.

[Vaswani et al., 2017]

https://arxiv.org/pdf/1706.03762


1. Transformer Motivation: Computational Complexity Per Layer

18

Table 1 of the Transformer paper.

[Vaswani et al., 2017]

When sequence length (n) << representation dimension (d), complexity per layer is lower for a Transformer 
compared to the recurrent models we’ve learned about so far.

https://arxiv.org/pdf/1706.03762


2. Transformer Motivation: Minimize Linear Interaction Distance

• RNNs are unrolled “left-to-right”.

• It encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for distant word 
pairs to interact.

19

tasty pizza

The chef atewho  …

O(sequence length) 



2. Transformer Motivation: Minimize Linear Interaction Distance

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know sequential structure 
doesn't tell the whole story...

20

The atechef who  …

Info of chef has gone through 
O(sequence length) many layers!



3. Transformer Motivation: Maximize Parallelizability

• Forward and backward passes have O(seq length) unparallelizable operations

• GPUs (and TPUs) can perform many independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN hidden 
states have been computed

• Inhibits training on very large datasets!

• Particularly problematic as sequence length increases, as we can no longer batch 
many examples together due to memory limitations

21
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High-Level Architecture: Transformer is all about (Self) Attention

• To recap, attention treats each word’s representation as a query to 
access and incorporate information from a set of values.

• Last lecture, we saw attention from the decoder to the encoder in a 
recurrent sequence-to-sequence model

• Self-attention is encoder-encoder (or decoder-decoder) attention where 
each word attends to each other word within the input (or output).

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2
attention

attention
1 1 1 1 1 1 1 1

All words attend 
to all words in 
previous layer; 
most arrows here 
are omitted
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Computational Dependencies for Recurrence vs. Attention

23

RNN-Based Encoder-Decoder 
Model with Attention

Transformer-Based 
Encoder-Decoder Model



Computational Dependencies for Recurrence vs. Attention
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RNN-Based Encoder-Decoder 
Model with Attention

Transformer-Based 
Encoder-Decoder Model

Transformer Advantages:
• Number of unparallelizable operations does 

not increase with sequence length.
• Each "word" interacts with each other, so 

maximum interaction distance is O(1).
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The Transformer Encoder-Decoder [Vaswani et al., 2017]
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In this section, you will learn exactly how 
the Transformer architecture works:
• First, we will talk about the Encoder!
• Next, we will go through the Decoder 

(which is quite similar)!



Encoder: Self-Attention

27
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Input 
Embedding

Output 
Embedding

Inputs Outputs 
(shifted right)

Output 
Probabilities

Encoder

Decoder

Self-Attention is the core building block of 
Transformer, so let's first focus on that!



Intuition for Attention Mechanism
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▪ Let's think of attention as a "fuzzy" or approximate hashtable:

▪ To look up a value, we compare a query against keys in a table.

▪ In a hashtable (shown on the bottom left):
▪ Each query (hash) maps to exactly one key-value pair.

▪ In (self-)attention (shown on the bottom right):
▪ Each query matches each key to varying degrees.

▪ We return a sum of values weighted by the query-key match.
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Recipe for Self-Attention in the Transformer Encoder

29

▪ Step 1: For each word   , calculate its query, key, and value.

• Step 2: Calculate attention score between query and keys.

• Step 3: Take the softmax to normalize attention scores.

• Step 4: Take a weighted sum of values.
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Recipe for (Vectorized) Self-Attention in the Transformer Encoder

30

▪ Step 1: With embeddings stacked in X, calculate queries, keys, and values.

• Step 2: Calculate attention scores between query and keys.

• Step 3: Take the softmax to normalize attention scores.

• Step 4: Take a weighted sum of values.



What We Have So Far: (Encoder) Self-Attention!
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But attention isn't quite all you need!

32

• Problem: Since there are no element-wise non-linearities, self-
attention is simply performing a re-averaging of the value vectors.

• Easy fix: Apply a feedforward layer to the output of attention, 
providing non-linear activation (and additional expressive power).
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But how do we make this work for deep networks?
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Training Trick #1: Residual Connections
Training Trick #2: LayerNorm
Training Trick #3: Scaled Dot Product Attention
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Training Trick #1: Residual Connections [He et al., 2016]
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• Residual connections are a simple but powerful 
technique from computer vision.

• Deep networks are surprisingly bad at 
learning the identity function!

• Therefore, directly passing "raw" embeddings to 
the next layer can actually be very helpful!

• This prevents the network from "forgetting" or 
distorting important information as it is 
processed by many layers.
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Residual connections are 
also thought to smooth the 
loss landscape and make 
training easier!



Training Trick #2: Layer Normalization [Ba et al., 2016]
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• Problem: Difficult to train the parameters of 
a given layer because its input from the layer 
beneath keeps shifting.

• Solution: Reduce variation by normalizing to 
zero mean and standard deviation of one 
within each layer. Feed Forward
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Training Trick #2: Layer Normalization [Ba et al., 2016]
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An Example of How LayerNorm Works (Image by Bala Priya C, Pinecone) 

Mean: Standard Deviation:
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Training Trick #3: Scaled Dot Product Attention
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• After LayerNorm, the mean and variance of 
vector elements is 0 and 1, respectively. (Yay!)

• However, the dot product still tends to take on 
extreme values, as its variance scales with 
dimensionality dk
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Quick Statistics Review:

• Mean of sum = sum of means =

• Variance of sum = sum of variances =

• To set the variance to 1, simply divide by  !

Updated Self-Attention Equation:



Major issue!

38

• We're almost done with the 
Encoder, but we have a 
major problem! Has anyone 
spotted it?

• Consider this sentence:

• "Man eats small dinosaur."

Transformer-Based 
Encoder-Decoder Model

Man eats small dinosaur



Major issue!
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• We're almost done with the 
Encoder, but we have a 
major problem! Has anyone 
spotted it?

• Consider this sentence:

• "Man eats small dinosaur."

• Wait a minute, order doesn't 
impact the network at all!

• This seems wrong given that 
word order does have meaning 
in many languages, including 
English!

Transformer-Based 
Encoder-Decoder Model

Man eats small dinosaur



Solution: Inject Order Information through Positional Encodings!

40
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Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the 
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝑝𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑇} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝑝𝑖 to our inputs!

• Let 𝑣𝑖  ෨𝑘𝑖 , 𝑞𝑖 be our old values, keys, and queries.

𝑣𝑖 = 𝑣𝑖 + 𝑝𝑖

𝑞𝑖 = 𝑞𝑖 + 𝑝𝑖

𝑘𝑖 = ෨𝑘𝑖 + 𝑝𝑖

In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…
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• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart

•  Cons:

• Not learnable; also the extrapolation doesn’t really work

Position representation vectors through sinusoids (original) 

cos(𝑖/100002∗1/𝑑)
𝑝𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2

/𝑑)

cos(𝑖/100002∗
𝑑
2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
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n
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Extension: Self-Attention w/ Relative Position Encodings
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Table and Equations From [Shaw et al., 2018]

where

Original Self-Attention Output:

Key Insight: The most salient position information is the relationship (e.g. “cat” is the word before “eat”) 
between words, rather than their absolute position (e.g. “cat” is word 2). 

Relation-Aware Self-Attention Output:

where

https://arxiv.org/abs/1803.02155


Multi-Headed Self-Attention: k heads are better than 1!

44

• High-Level Idea: Let's perform self-attention multiple times in parallel and combine the results.

Wizards of the Coast, Artist: Todd Lockwood

[Vaswani et al. 2017]



The Transformer Encoder: Multi-headed Self-Attention
• What if we want to look in multiple places in the sentence at 

once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗  is high, but 

maybe we want to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V 
matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads, 
and ℓ ranges from 1 to ℎ.

• Each attention head performs attention independently:

• outputℓ =  softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where  outputℓ ∈ 

ℝ𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = 𝑌[output1; … ; outputℎ], where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value 
vectors differently.
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Credit to https://jalammar.github.io/illustrated-transformer/



Yay, we've completed the Encoder! Time for the Decoder...
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Decoder: Masked Multi-Head Self-Attention

47

• Problem: How do we keep the decoder 
from “cheating”? If we have a language 
modeling objective, can't the network 
just look ahead and "see" the answer?

Transformer-Based 
Encoder-Decoder Model



Decoder: Masked Multi-Head Self-Attention

48

• Problem: How do we keep the decoder 
from “cheating”? If we have a language 
modeling objective, can't the network 
just look ahead and "see" the answer?

• Solution: Masked Multi-Head 
Attention. At a high-level, we hide 
(mask) information about future 
tokens from the model.

Transformer-Based 
Encoder-Decoder Model



Masking the future in self-attention

• To use self-attention in 
decoders, we need to ensure 
we can’t peek at the future.

• At every timestep, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

The

chef

who

[START]

For encoding 
these words

We can look at these 
(not greyed out) words

𝑒𝑖𝑗 =  ൝
𝑞𝑖

⊤𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

−∞

−∞

−∞

−∞

−∞

−∞−∞

−∞−∞ −∞
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Decoder: Masked Multi-Headed Self-Attention
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Encoder-Decoder Attention
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• We saw that self-attention is when keys, queries, 
and values come from the same source.

• In the decoder, we have attention that looks 
more like what we saw last week.

• Let ℎ1, … , ℎ𝑇 be output vectors from the 
Transformer encoder;  𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑇 be input vectors from the 
Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the 
encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the decoder, 
𝑞𝑖 = 𝑄𝑧𝑖.



Decoder: Finishing touches!
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Decoder: Finishing touches!
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• Add a feed forward layer (with residual 
connections and layer norm)
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Decoder: Finishing touches!
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• Add a feed forward layer (with residual 
connections and layer norm)

• Add a final linear layer to project the 
embeddings into a much longer vector of 
length vocab size (logits)
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Decoder: Finishing touches!
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• Add a feed forward layer (with residual 
connections and layer norm)

• Add a final linear layer to project the 
embeddings into a much longer vector of 
length vocab size (logits)

• Add a final softmax to generate a 
probability distribution of possible next 
words!
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Recap of Transformer Architecture
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Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

57



• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows 
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• As we learned: Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

• Rotary Embeddings [Su et al., 2021]

What would we like to fix about the Transformer?
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf
https://arxiv.org/abs/2104.09864


• Considerable recent work has gone into the question, Can we build models like 
Transformers without paying the 𝑂 𝑇2  all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Recent work on improving on quadratic self-attention cost

59

Key idea: map the 
sequence length 
dimension to a lower-
dimensional space for 
values, keys In
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https://arxiv.org/pdf/2006.04768.pdf


• Considerable recent work has gone into the question, Can we build models like 
Transformers without paying the 𝑂 𝑇2  all-pairs self-attention cost?

• For example, BigBird [Zaheer et al., 2021]

Recent work on improving on quadratic self-attention cost

60

Key idea: replace all-pairs interactions with a family of other interactions, like local 
windows, looking at everything, and random interactions.

https://arxiv.org/pdf/2006.04768.pdf


Do Transformer Modifications Transfer?
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• "Surprisingly, we find that most modifications do not meaningfully improve 
performance."



• Yay, you now understand Transformers!

• Next class, we will see how pre-training can take performance to the next level!

• Good luck on assignment 4!

• Remember to work on your project proposal!

Parting remarks

62


	Slide 1: Natural Language Processing with Deep Learning   CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: Lecture Plan
	Slide 4: Transformers: Is Attention All We Need?
	Slide 5: Transformers: Is Attention All We Need?
	Slide 6: Transformers Have Revolutionized the Field of NLP 
	Slide 7: Great Results with Transformers: Machine Translation 
	Slide 8: Great Results with Transformers: SuperGLUE
	Slide 9: Great Results with Transformers: Rise of Large Language Models!
	Slide 10: Transformers Even Show Promise Outside of NLP
	Slide 11: Transformers Even Show Promise Outside of NLP
	Slide 12: Transformers Even Show Promise Outside of NLP
	Slide 13: Transformers Even Show Promise Outside of NLP
	Slide 14: Scaling Laws: Are Transformers All We Need?
	Slide 15: Outline
	Slide 16: As of last lecture: recurrent models for (most) NLP! 
	Slide 17: Why Move Beyond Recurrence? Motivation for Transformer Architecture
	Slide 18: 1. Transformer Motivation: Computational Complexity Per Layer
	Slide 19: 2. Transformer Motivation: Minimize Linear Interaction Distance 
	Slide 20: 2. Transformer Motivation: Minimize Linear Interaction Distance 
	Slide 21: 3. Transformer Motivation: Maximize Parallelizability 
	Slide 22: High-Level Architecture: Transformer is all about (Self) Attention 
	Slide 23: Computational Dependencies for Recurrence vs. Attention
	Slide 24: Computational Dependencies for Recurrence vs. Attention
	Slide 25: Outline
	Slide 26:   The Transformer Encoder-Decoder [Vaswani et al., 2017]
	Slide 27:   Encoder: Self-Attention 
	Slide 28: Intuition for Attention Mechanism
	Slide 29: Recipe for Self-Attention in the Transformer Encoder
	Slide 30: Recipe for (Vectorized) Self-Attention in the Transformer Encoder
	Slide 31: What We Have So Far: (Encoder) Self-Attention!
	Slide 32: But attention isn't quite all you need!
	Slide 33: But how do we make this work for deep networks?
	Slide 34: Training Trick #1: Residual Connections [He et al., 2016]
	Slide 35: Training Trick #2: Layer Normalization [Ba et al., 2016]
	Slide 36: Training Trick #2: Layer Normalization [Ba et al., 2016]
	Slide 37: Training Trick #3: Scaled Dot Product Attention
	Slide 38: Major issue!
	Slide 39: Major issue!
	Slide 40: Solution: Inject Order Information through Positional Encodings!
	Slide 41: Fixing the first self-attention problem: sequence order 
	Slide 42: Position representation vectors through sinusoids (original)  
	Slide 43: Extension: Self-Attention w/ Relative Position Encodings
	Slide 44: Multi-Headed Self-Attention: k heads are better than 1!
	Slide 45: The Transformer Encoder: Multi-headed Self-Attention 
	Slide 46: Yay, we've completed the Encoder! Time for the Decoder...
	Slide 47: Decoder: Masked Multi-Head Self-Attention
	Slide 48: Decoder: Masked Multi-Head Self-Attention
	Slide 49: Masking the future in self-attention 
	Slide 50: Decoder: Masked Multi-Headed Self-Attention
	Slide 51: Encoder-Decoder Attention
	Slide 52: Decoder: Finishing touches!
	Slide 53: Decoder: Finishing touches!
	Slide 54: Decoder: Finishing touches!
	Slide 55: Decoder: Finishing touches!
	Slide 56: Recap of Transformer Architecture
	Slide 57: Outline
	Slide 58: What would we like to fix about the Transformer? 
	Slide 59: Recent work on improving on quadratic self-attention cost 
	Slide 60: Recent work on improving on quadratic self-attention cost 
	Slide 61: Do Transformer Modifications Transfer?
	Slide 62: Parting remarks 

