
Natural Language Processing
with Deep Learning

CS224N/Ling284

Anna Goldie

Lecture 8: Transformers

Adapted from slides by Anna Goldie, John Hewitt

Lecture Plan

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

2

Lecture Plan

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

3

Transformers: Is Attention All We Need?

4

• Last lecture, we learned that attention dramatically improves the performance of
recurrent neural networks.

• Today, we will take this one step further and ask Is Attention All We Need?

Transformers: Is Attention All We Need?

5

• Last lecture, we learned that attention dramatically improves the performance of
recurrent neural networks.

• Today, we will take this one step further and ask Is Attention All We Need?

• Spoiler: Not Quite!

Transformers Have Revolutionized the Field of NLP

6

• By the end of this lecture, you will deeply understand the neural architecture that
underpins virtually every state-of-the-art NLP model today!

[Vaswani et al., 2017]

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Great Results with Transformers: Machine Translation

[Vaswani et al., 2017]

Not just better Machine
Translation BLEU scores

Also more efficient to
train!

First, Machine Translation results from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]7

Great Results with Transformers: SuperGLUE

[Wang et al., 2019]

Not just better Machine
Translation BLEU scores

Also more efficient to
train!

[Test sets: SuperGLUE Leaderboard Version: 2.0]8

SuperGLUE is a suite of challenging NLP tasks, including question-answering, word sense
disambiguation, coreference resolution, and natural language inference.

Great Results with Transformers: Rise of Large Language Models!

9

Today, Transformer-based models dominate LMSYS Chatbot Arena Leaderboard!

[Chiang et al., 2024]

Transformers Even Show Promise Outside of NLP

10

Transformers Even Show Promise Outside of NLP

11

Protein Folding

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2

Transformers Even Show Promise Outside of NLP

12

Protein Folding

Image Classification
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms
ResNet-based baselines with substantially less compute.

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2

Transformers Even Show Promise Outside of NLP

13

Protein Folding

Image Classification
[Dosovitskiy et al. 2020]: Vision Transformer (ViT) outperforms
ResNet-based baselines with substantially less compute.

ML for Systems
[Zhou et al. 2020]: A Transformer-based
compiler model (GO-one) speeds up a
Transformer model!

[Jumper et al. 2021] aka AlphaFold2!

https://www.nature.com/articles/s41586-021-03819-2

Scaling Laws: Are Transformers All We Need?

14

• With Transformers, language modeling performance improves smoothly as we increase
model size, training data, and compute resources in tandem.

• This power-law relationship has been observed over multiple orders of magnitude with
no sign of slowing!

• If we keep scaling up these models (with no change to the architecture), could they
eventually match or exceed human-level performance?

[Kaplan et al., 2020]

https://arxiv.org/pdf/2001.08361.pdf

Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

15

As of last lecture: recurrent models for (most) NLP!

• Circa 2016, the de facto strategy in NLP is to
encode sentences with a bidirectional LSTM:
(for example, the source sentence in a translation)

16

• Define your output (parse, sentence,
summary) as a sequence, and use an LSTM to
generate it.

• Use attention to allow flexible access to
memory

Why Move Beyond Recurrence?
Motivation for Transformer Architecture

17

The Transformers authors had 3 desirata when designing this architecture:

1. Minimize (or at least not increase) computational complexity per layer.

2. Minimize path length between any pair of words to facilitate learning of long-range
dependencies.

3. Maximize the amount of computation that can be parallelized.

[Vaswani et al., 2017]

https://arxiv.org/pdf/1706.03762

1. Transformer Motivation: Computational Complexity Per Layer

18

Table 1 of the Transformer paper.

[Vaswani et al., 2017]

When sequence length (n) << representation dimension (d), complexity per layer is lower for a Transformer
compared to the recurrent models we’ve learned about so far.

https://arxiv.org/pdf/1706.03762

2. Transformer Motivation: Minimize Linear Interaction Distance

• RNNs are unrolled “left-to-right”.

• It encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for distant word
pairs to interact.

19

tasty pizza

The chef atewho …

O(sequence length)

2. Transformer Motivation: Minimize Linear Interaction Distance

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know sequential structure
doesn't tell the whole story...

20

The atechef who …

Info of chef has gone through
O(sequence length) many layers!

3. Transformer Motivation: Maximize Parallelizability

• Forward and backward passes have O(seq length) unparallelizable operations

• GPUs (and TPUs) can perform many independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN hidden
states have been computed

• Inhibits training on very large datasets!

• Particularly problematic as sequence length increases, as we can no longer batch
many examples together due to memory limitations

21

h1

0

1 T

hT

T-1

h2

1

2

2

3

Numbers indicate min # of steps before a state can be computed

High-Level Architecture: Transformer is all about (Self) Attention

• To recap, attention treats each word’s representation as a query to
access and incorporate information from a set of values.

• Last lecture, we saw attention from the decoder to the encoder in a
recurrent sequence-to-sequence model

• Self-attention is encoder-encoder (or decoder-decoder) attention where
each word attends to each other word within the input (or output).

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2
attention

attention
1 1 1 1 1 1 1 1

All words attend
to all words in
previous layer;
most arrows here
are omitted

22

Computational Dependencies for Recurrence vs. Attention

23

RNN-Based Encoder-Decoder
Model with Attention

Transformer-Based
Encoder-Decoder Model

Computational Dependencies for Recurrence vs. Attention

24

RNN-Based Encoder-Decoder
Model with Attention

Transformer-Based
Encoder-Decoder Model

Transformer Advantages:
• Number of unparallelizable operations does

not increase with sequence length.
• Each "word" interacts with each other, so

maximum interaction distance is O(1).

Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

25

The Transformer Encoder-Decoder [Vaswani et al., 2017]

26

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

In this section, you will learn exactly how
the Transformer architecture works:
• First, we will talk about the Encoder!
• Next, we will go through the Decoder

(which is quite similar)!

Encoder: Self-Attention

27

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Output
Probabilities

Encoder

Decoder

Self-Attention is the core building block of
Transformer, so let's first focus on that!

Intuition for Attention Mechanism

28

▪ Let's think of attention as a "fuzzy" or approximate hashtable:

▪ To look up a value, we compare a query against keys in a table.

▪ In a hashtable (shown on the bottom left):
▪ Each query (hash) maps to exactly one key-value pair.

▪ In (self-)attention (shown on the bottom right):
▪ Each query matches each key to varying degrees.

▪ We return a sum of values weighted by the query-key match.

k0

k1

k2

k3

k4

k5

k6

k7

v1

v3

v2

v4

v6

v7

v5

v0

q

k0

k1

k2

k3

k4

k5

k6

k7

v1

v3

v2

v4

v6

v7

v5

v0

q

Recipe for Self-Attention in the Transformer Encoder

29

▪ Step 1: For each word , calculate its query, key, and value.

• Step 2: Calculate attention score between query and keys.

• Step 3: Take the softmax to normalize attention scores.

• Step 4: Take a weighted sum of values.

k0

k1

k2

k3

k4

k5

k6

k7

v1

v3

v2

v4

v6

v7

v5

v0

q

Recipe for (Vectorized) Self-Attention in the Transformer Encoder

30

▪ Step 1: With embeddings stacked in X, calculate queries, keys, and values.

• Step 2: Calculate attention scores between query and keys.

• Step 3: Take the softmax to normalize attention scores.

• Step 4: Take a weighted sum of values.

What We Have So Far: (Encoder) Self-Attention!

31

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Output
Probabilities

Encoder

Decoder

But attention isn't quite all you need!

32

• Problem: Since there are no element-wise non-linearities, self-
attention is simply performing a re-averaging of the value vectors.

• Easy fix: Apply a feedforward layer to the output of attention,
providing non-linear activation (and additional expressive power).

Feed Forward

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder

Decoder

Output
Probabilities

Equation for Feed Forward Layer

But how do we make this work for deep networks?

33

Training Trick #1: Residual Connections
Training Trick #2: LayerNorm
Training Trick #3: Scaled Dot Product Attention

Feed Forward

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Training Trick #1: Residual Connections [He et al., 2016]

34

• Residual connections are a simple but powerful
technique from computer vision.

• Deep networks are surprisingly bad at
learning the identity function!

• Therefore, directly passing "raw" embeddings to
the next layer can actually be very helpful!

• This prevents the network from "forgetting" or
distorting important information as it is
processed by many layers.

Feed Forward

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder

Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add

Add

Residual connections are
also thought to smooth the
loss landscape and make
training easier!

Training Trick #2: Layer Normalization [Ba et al., 2016]

35

• Problem: Difficult to train the parameters of
a given layer because its input from the layer
beneath keeps shifting.

• Solution: Reduce variation by normalizing to
zero mean and standard deviation of one
within each layer. Feed Forward

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

Mean: Standard Deviation:

Training Trick #2: Layer Normalization [Ba et al., 2016]

36

An Example of How LayerNorm Works (Image by Bala Priya C, Pinecone)

Mean: Standard Deviation:

Feed Forward

Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

Training Trick #3: Scaled Dot Product Attention

37

• After LayerNorm, the mean and variance of
vector elements is 0 and 1, respectively. (Yay!)

• However, the dot product still tends to take on
extreme values, as its variance scales with
dimensionality dk

Feed Forward

Scaled Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

Quick Statistics Review:

• Mean of sum = sum of means =

• Variance of sum = sum of variances =

• To set the variance to 1, simply divide by !

Updated Self-Attention Equation:

Major issue!

38

• We're almost done with the
Encoder, but we have a
major problem! Has anyone
spotted it?

• Consider this sentence:

• "Man eats small dinosaur."

Transformer-Based
Encoder-Decoder Model

Man eats small dinosaur

Major issue!

39

• We're almost done with the
Encoder, but we have a
major problem! Has anyone
spotted it?

• Consider this sentence:

• "Man eats small dinosaur."

• Wait a minute, order doesn't
impact the network at all!

• This seems wrong given that
word order does have meaning
in many languages, including
English!

Transformer-Based
Encoder-Decoder Model

Man eats small dinosaur

Solution: Inject Order Information through Positional Encodings!

40

Feed Forward

Scaled Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

+
Positional
Encoding

Decoder

Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝑝𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑇} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝑝𝑖 to our inputs!

• Let 𝑣𝑖 ෨𝑘𝑖 , 𝑞𝑖 be our old values, keys, and queries.

𝑣𝑖 = 𝑣𝑖 + 𝑝𝑖

𝑞𝑖 = 𝑞𝑖 + 𝑝𝑖

𝑘𝑖 = ෨𝑘𝑖 + 𝑝𝑖

In deep self-attention
networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add…

41

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart

• Cons:

• Not learnable; also the extrapolation doesn’t really work

Position representation vectors through sinusoids (original)

cos(𝑖/100002∗1/𝑑)
𝑝𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2

/𝑑)

cos(𝑖/100002∗
𝑑
2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
im

en
si

o
n

42

Extension: Self-Attention w/ Relative Position Encodings

43

Table and Equations From [Shaw et al., 2018]

where

Original Self-Attention Output:

Key Insight: The most salient position information is the relationship (e.g. “cat” is the word before “eat”)
between words, rather than their absolute position (e.g. “cat” is word 2).

Relation-Aware Self-Attention Output:

where

https://arxiv.org/abs/1803.02155

Multi-Headed Self-Attention: k heads are better than 1!

44

• High-Level Idea: Let's perform self-attention multiple times in parallel and combine the results.

Wizards of the Coast, Artist: Todd Lockwood

[Vaswani et al. 2017]

The Transformer Encoder: Multi-headed Self-Attention
• What if we want to look in multiple places in the sentence at

once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗 is high, but

maybe we want to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V
matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads,
and ℓ ranges from 1 to ℎ.

• Each attention head performs attention independently:

• outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where outputℓ ∈

ℝ𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = 𝑌[output1; … ; outputℎ], where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value
vectors differently.

45

Credit to https://jalammar.github.io/illustrated-transformer/

Yay, we've completed the Encoder! Time for the Decoder...

46

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

+
Positional
Encoding

Decoder: Masked Multi-Head Self-Attention

47

• Problem: How do we keep the decoder
from “cheating”? If we have a language
modeling objective, can't the network
just look ahead and "see" the answer?

Transformer-Based
Encoder-Decoder Model

Decoder: Masked Multi-Head Self-Attention

48

• Problem: How do we keep the decoder
from “cheating”? If we have a language
modeling objective, can't the network
just look ahead and "see" the answer?

• Solution: Masked Multi-Head
Attention. At a high-level, we hide
(mask) information about future
tokens from the model.

Transformer-Based
Encoder-Decoder Model

Masking the future in self-attention

• To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

• At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

• To enable parallelization, we
mask out attention to future
words by setting attention
scores to −∞.

The

chef

who

[START]

For encoding
these words

We can look at these
(not greyed out) words

𝑒𝑖𝑗 = ൝
𝑞𝑖

⊤𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

−∞

−∞

−∞

−∞

−∞

−∞−∞

−∞−∞ −∞

49

Decoder: Masked Multi-Headed Self-Attention

50

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

+
Positional
Encoding

Add & Norm

Masked Multi-
Head Attention

+
Positional
Encoding

Encoder-Decoder Attention

51

Feed Forward

Multi-Head
Self-Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

Encoder Decoder

Output
Probabilities

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)

Add & Norm

Add & Norm

+
Positional
Encoding

Add & Norm

Masked Multi-Head
Self-Attention

+
Positional
Encoding

Add & Norm

Multi-Head
Cross-Attention

• We saw that self-attention is when keys, queries,
and values come from the same source.

• In the decoder, we have attention that looks
more like what we saw last week.

• Let ℎ1, … , ℎ𝑇 be output vectors from the
Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑇 be input vectors from the
Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the
encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the decoder,
𝑞𝑖 = 𝑄𝑧𝑖.

Decoder: Finishing touches!

52

Add & Norm Add & Norm

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++
Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Add & Norm

Decoder: Finishing touches!

53

• Add a feed forward layer (with residual
connections and layer norm)

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++
Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Add & Norm

Decoder: Finishing touches!

54

• Add a feed forward layer (with residual
connections and layer norm)

• Add a final linear layer to project the
embeddings into a much longer vector of
length vocab size (logits)

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Add & Norm

Decoder: Finishing touches!

55

• Add a feed forward layer (with residual
connections and layer norm)

• Add a final linear layer to project the
embeddings into a much longer vector of
length vocab size (logits)

• Add a final softmax to generate a
probability distribution of possible next
words!

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Add & Norm

Recap of Transformer Architecture

56

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Masked Multi-
Head Attention

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)

++

Linear

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Repeat 6x
(# of Layers)

Repeat 6x
(# of Layers)Encoder

Decoder

Outline

1. Impact of Transformers on NLP (and ML more broadly)

2. From Recurrence (RNNs) to Attention-Based NLP Models

3. Understanding the Transformer Model

4. Drawbacks and Variants of Transformers

57

• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• As we learned: Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

• Rotary Embeddings [Su et al., 2021]

What would we like to fix about the Transformer?

58

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf
https://arxiv.org/abs/2104.09864

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Recent work on improving on quadratic self-attention cost

59

Key idea: map the
sequence length
dimension to a lower-
dimensional space for
values, keys In

fe
re

n
ce

 t
im

e
(s

)

Sequence length / batch size

https://arxiv.org/pdf/2006.04768.pdf

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, BigBird [Zaheer et al., 2021]

Recent work on improving on quadratic self-attention cost

60

Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

https://arxiv.org/pdf/2006.04768.pdf

Do Transformer Modifications Transfer?

61

• "Surprisingly, we find that most modifications do not meaningfully improve
performance."

• Yay, you now understand Transformers!

• Next class, we will see how pre-training can take performance to the next level!

• Good luck on assignment 4!

• Remember to work on your project proposal!

Parting remarks

62

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan
	Slide 3: Lecture Plan
	Slide 4: Transformers: Is Attention All We Need?
	Slide 5: Transformers: Is Attention All We Need?
	Slide 6: Transformers Have Revolutionized the Field of NLP
	Slide 7: Great Results with Transformers: Machine Translation
	Slide 8: Great Results with Transformers: SuperGLUE
	Slide 9: Great Results with Transformers: Rise of Large Language Models!
	Slide 10: Transformers Even Show Promise Outside of NLP
	Slide 11: Transformers Even Show Promise Outside of NLP
	Slide 12: Transformers Even Show Promise Outside of NLP
	Slide 13: Transformers Even Show Promise Outside of NLP
	Slide 14: Scaling Laws: Are Transformers All We Need?
	Slide 15: Outline
	Slide 16: As of last lecture: recurrent models for (most) NLP!
	Slide 17: Why Move Beyond Recurrence? Motivation for Transformer Architecture
	Slide 18: 1. Transformer Motivation: Computational Complexity Per Layer
	Slide 19: 2. Transformer Motivation: Minimize Linear Interaction Distance
	Slide 20: 2. Transformer Motivation: Minimize Linear Interaction Distance
	Slide 21: 3. Transformer Motivation: Maximize Parallelizability
	Slide 22: High-Level Architecture: Transformer is all about (Self) Attention
	Slide 23: Computational Dependencies for Recurrence vs. Attention
	Slide 24: Computational Dependencies for Recurrence vs. Attention
	Slide 25: Outline
	Slide 26: The Transformer Encoder-Decoder [Vaswani et al., 2017]
	Slide 27: Encoder: Self-Attention
	Slide 28: Intuition for Attention Mechanism
	Slide 29: Recipe for Self-Attention in the Transformer Encoder
	Slide 30: Recipe for (Vectorized) Self-Attention in the Transformer Encoder
	Slide 31: What We Have So Far: (Encoder) Self-Attention!
	Slide 32: But attention isn't quite all you need!
	Slide 33: But how do we make this work for deep networks?
	Slide 34: Training Trick #1: Residual Connections [He et al., 2016]
	Slide 35: Training Trick #2: Layer Normalization [Ba et al., 2016]
	Slide 36: Training Trick #2: Layer Normalization [Ba et al., 2016]
	Slide 37: Training Trick #3: Scaled Dot Product Attention
	Slide 38: Major issue!
	Slide 39: Major issue!
	Slide 40: Solution: Inject Order Information through Positional Encodings!
	Slide 41: Fixing the first self-attention problem: sequence order
	Slide 42: Position representation vectors through sinusoids (original)
	Slide 43: Extension: Self-Attention w/ Relative Position Encodings
	Slide 44: Multi-Headed Self-Attention: k heads are better than 1!
	Slide 45: The Transformer Encoder: Multi-headed Self-Attention
	Slide 46: Yay, we've completed the Encoder! Time for the Decoder...
	Slide 47: Decoder: Masked Multi-Head Self-Attention
	Slide 48: Decoder: Masked Multi-Head Self-Attention
	Slide 49: Masking the future in self-attention
	Slide 50: Decoder: Masked Multi-Headed Self-Attention
	Slide 51: Encoder-Decoder Attention
	Slide 52: Decoder: Finishing touches!
	Slide 53: Decoder: Finishing touches!
	Slide 54: Decoder: Finishing touches!
	Slide 55: Decoder: Finishing touches!
	Slide 56: Recap of Transformer Architecture
	Slide 57: Outline
	Slide 58: What would we like to fix about the Transformer?
	Slide 59: Recent work on improving on quadratic self-attention cost
	Slide 60: Recent work on improving on quadratic self-attention cost
	Slide 61: Do Transformer Modifications Transfer?
	Slide 62: Parting remarks

