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Benchmarks and evaluations drive progress
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Benchmarks and how we evaluate drive the progress of the field



Two major types of evaluations
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Close-ended evaluations

Open ended evaluations



Classification and closed-ended benchmarks
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• Many NLP tasks are ‘closed-ended’
• Limited number of potential answers
• Often one or just a few correct answers

• Examples:
• Sentiment classification (sentiment label)
• Extractive QA (the part of the document that has the answer)

• Enables automatic evaluation
• Similar to the usual machine learning evaluations



Single-task benchmarks
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SST, IMDB (Sentiment) SNLI, MultiNLI (entailment)
SQUaD, 

NaturalQuestions (QA)



Multi-task benchmark - superGLUE
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Attempt to measure “general language capabilities”



Examples from superGLUE
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Cover a number of different tasks

• BoolQ, MultiRC (reading texts)
• CB, RTE (Entailment)
• COPA (cause and effect)
• ReCoRD (QA+reasoning)
• WiC (meaning of words)
• WSC (coreference)



Recap: MMLU
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Massive Multitask Language
Understanding (MMLU)
[Hendrycks et al., 2021]

New benchmarks for measuring LM
performance on 57 diverse knowledge
intensive tasks



Some intuition: examples from MMLU



What makes a good benchmark?
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• Example selection (scale, diversity)
• Benchmark should cover the phenomena of interest
• Complex phenomena require many samples

• Difficulty 
• Doable for humans
• Hard for baselines at the time

• Annotation quality
• ‘Correct’ behavior should be clear



One example of a successful benchmark (SQuAD)
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Scale (and inclusion of training data)

Headroom (big gap to human)

Large headroom to human perf
Easy, relatively clean automatic evaluation



One example of a good benchmark with a flaw
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The dataset itself is hard, but there can be undiscovered spurious correlations

The economy could be still better. 
Premise:

Hypothesis:
The economy has been betternever

Negation

Entailment
[Gururangan+ 2019]



Targeted and adversarial evaluations
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• The ‘negation bias’ issues show that plain benchmarks can miss things

• More targeted benchmarking
• Can models do well when you modify specific parts of the input?
• What about negating both inputs and outputs?

• More adversarial benchmarking
• Models can exploit spurious correlations
• Evaluate models adversarially(where they cant exploit spurious features)



Model evaluation as model analysis in natural language inference
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Recall the natural language inference task, as encoded in the Multi-NLI dataset.

[Williams et al., 2018]

Premise
“He turned and saw Jon 
sleeping in his half-tent”

[Likely to get the right answer, since the accuracy is 95%?]

Hypothesis
“He saw Jon was asleep”

Model A
Accuracy: 95%

Entailment

Neutral

Contradiction

https://cims.nyu.edu/~sbowman/multinli/paper.pdf


Model evaluation as model analysis in natural language inference
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What if our model is using simple heuristics to get good accuracy?

A diagnostic test set is carefully constructed to test for a specific skill or capacity of your neural model.

For example, HANS: (Heuristic Analysis for NLI Systems) tests syntactic heuristics in NLI

[McCoy et al., 2019]

https://arxiv.org/pdf/1902.01007.pdf


HANS model analysis in natural language inference
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McCoy et al., 2019 took 4 strong MNLI models,
with the following accuracies on the original 
test set (in-domain)

Evaluating on HANS, where syntactic 
heursitcs work, accuracy is high!

But where syntactic heuristics fail, accuracy 
is very very low…

[McCoy et al., 2019]

https://arxiv.org/pdf/1902.01007.pdf


Careful test sets as unit test suites: CheckListing
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• Small careful test sets sound like… unit test suites, but for neural networks!
• Minimum functionality tests: small test sets that target a specific behavior.

• Ribeiro et al., 2020 showed  ML engineers working on a sentiment analysis product an interface 
with categories of linguistic capabilities and types of tests.
• The engineers found a bunch of bugs (categories of high error) through this method!

[Ribeiro et al., 2020]

https://arxiv.org/pdf/2005.04118.pdf


Fitting the dataset vs learning the task
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Across a wide range of tasks, high model accuracy on the in-domain test set does not 
imply the model will also do well on other, “reasonable” out-of-domain examples.

One way to think about this: models seem to be learning the dataset (like MNLI) not the 
task (like how humans can perform natural language inference). 

[Ribeiro et al., 2020]

https://arxiv.org/pdf/2005.04118.pdf


Adversarial (and multi objective) benchmarking
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Adversarial NLI (ANLI)

DynaBench



Evaluating open-ended text generation
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• From ‘few correct answers’ to ‘thousands of correct answers’

• Can’t have human annotators enumerate the right answers (or can we?)

• There are now better and worse answers (not just right and wrong)



Types of evaluation methods for text generation
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Human EvaluationsContent Overlap Metrics Model-based Metrics

Ref: They walked to the grocery store .

Gen: The woman went to the hardware store .

(Some slides repurposed from Asli Celikyilmaz from EMNLP 2020 tutorial)



Content overlap metrics
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• Compute a score that indicates the lexical similarity between generated and gold-
standard (human-written) text

• Fast and efficient and widely used
• N-gram overlap metrics (e.g., BLEU, ROUGE, METEOR, CIDEr, etc.)

Ref: They walked to the grocery store .

Gen: The woman went to the hardware store .



N-gram overlap metrics
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Word overlap–based metrics (BLEU, ROUGE, METEOR, CIDEr, etc.)

• They’re not ideal for machine translation

• They get progressively much worse for tasks that are more open-ended than machine 
translation
• Worse for summarization, as longer output texts are harder to measure
• Much worse for dialogue, which is more open-ended that summarization
• Much, much worse story generation, which is also open-ended, but whose 

sequence length can make it seem you’re getting decent scores!



A simple failure case
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n-gram overlap metrics have no concept of semantic relatedness!

Are you enjoying the 
CS224N lectures?

Heck yes !

You know it !

Yes !

Yup .

Heck no !

Score:
0.61

0.25

0

0.67

False negative

False positive



Semantic overlap metrics
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SPICE: 
Semantic propositional image caption 
evaluation is an image captioning metric 
that initially parses the reference text to 
derive an abstract scene graph 
representation. 

(Anderson et al., 2016).

SPIDER: 
A combination of semantic graph similarity 
(SPICE) and n-gram similarity measure 
(CIDER), the SPICE metric yields a more 
complete quality evaluation metric.

(Liu et al., 2017)

PYRAMID: 
• Incorporates human content selection 

variation in summarization evaluation.

• Identifies Summarization Content Units 
(SCU)s to compare information content 
in summaries. 

(Nenkova, et al., 2007)



Model-based metrics to capture more semantics
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• Use learned representations of words and 
sentences to compute semantic similarity 
between generated and reference texts

• No more n-gram bottleneck because text 
units are represented as embeddings!

• The embeddings are pretrained, distance 
metrics used to measure the similarity can 
be fixed



Model-based metrics: Word distance functions
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Word Mover’s 
Distance 
Measures the distance 
between two sequences (e.g., 
sentences, paragraphs, etc.), 
using word embedding 
similarity matching.
(Kusner et.al., 2015; Zhao et al., 2019)

Vector Similarity 
Embedding based similarity for 
semantic distance between text.

• Embedding Average (Liu et al., 2016)
• Vector Extrema (Liu et al., 2016)
• MEANT (Lo, 2017)
• YISI (Lo, 2019)

BERTSCORE 
Uses pre-trained contextual embeddings from 
BERT and matches words in candidate and 
reference sentences by cosine similarity. 
(Zhang et.al. 2020)



Model-based metrics: Beyond word matching

28

BLEURT:
A regression model based on BERT returns a score that 
indicates to what extent the candidate text is grammatical 
and conveys the meaning of the reference text. 

(Sellam et.al. 2020)
   

Sentence Movers Similarity : 
Based on Word Movers Distance to evaluate text in a continuous space 
using sentence embeddings from recurrent neural network 
representations.

(Clark et.al., 2019)



Evaluating Open-ended Text Generation

29

MAUVE
MAUVE computes information divergence in a quantized embedding 
space, between the generated text and the gold reference text (Pillutla 
et.al., 2022). 



MAUVE (details) 
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An important failure case
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• Reference-based measures  are only as good as their references.

CNN/Daily Mail dataset Not correlated at all!



Don’t blindly trust references in datasets!
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Training on references actually makes model worse!



How to evaluate an evaluation metric?

33 (Liu et al, EMNLP 2016)



Reference free evals
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• Reference-based evaluation:
• Compare human written reference to model outputs
• ‘Standard’ evaluation for most NLP tasks

• Examples: BLEU, ROUGE, BertScore etc.

• Reference free evaluation:
• Have a model give a score
• No human reference
• Was nonstandard – now becoming popular with GPT4

• Examples: FactCC, GPT-4-as-judge, AlpacaEval



Pitfalls of reference free evals (more on this later)
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Sophisticated summarization factuality metrics (FactCC / DA) 
 are less correlated with humans than overlap!



Human evaluations
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• Automatic metrics fall short of matching human decisions

• Human evaluation is most important form of evaluation for text generation 
systems. 

• Gold standard in developing new automatic metrics
• New automated metrics must correlate well with human evaluations!



Human evaluations
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• Ask humans to evaluate the quality of generated text

• Overall or along some specific dimension:
• fluency
• coherence / consistency
• factuality and correctness
• commonsense
• style / formality 
• grammaticality
• typicality
• redundancy
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Note: Don’t compare human 
evaluation scores across 
differently conducted studies

Even if they claim to evaluate 
the same dimensions!



Human evaluation: Issues
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• Human judgments are regarded as the gold standard 
• Of course, we know that human eval is slow and expensive
• Beyond the cost of human eval, it’s still far from perfect: 
 
• Humans Evaluation is hard: 

• Results are inconsistent / not reproducible
• can be illogical
• misinterpret your question
• Precision not recall.
• …



Learning from human feedback

HUSE:
 
Human Unified with Statistical Evaluation (HUSE), 
determines the similarity of the output distribution 
and a human reference distribution.

(Hashimoto et.al. 2019)

ADEM: 

A learned metric from human judgments for dialog 
system evaluation in a chatbot setting.

(Lowe et.al., 2017)



Evaluating language models as chatbots
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• How do we evaluate something like ChatGPT?
• So many different use cases it’s hard to evaluate
• The responses are also long-form text, which is even harder to evaluate.

VS



Side-by-side ratings
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Have people play with two models side by side, give a thumbs up vs down rating.



What’s missing with side-by-side human eval?
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• Cost
• Human annotation takes large, community effort
• New models take a long time to benchmark
• Only notable models get benchmarked

• External validity
• Typing random questions into a head-to-head website may not be representative
• Ratings by random users may represent some surface-level engagement



Lowering the costs – use a LM evaluator
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• Use a LM as a reference free evaluator
• Surprisingly high correlations with human

• Common versions: MT-bench, AlpacaEval, ‘GPT-as-judge’

Evaluate
LLM



Things to be worried about with LM evaluators
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• Same issues as before: Spurious correlations!
• Length
• Position (but everyone randomizes this away)
• GPT-4 self bias



External/ecological validity: chatbot arena

45

Pro: Much more ‘in the wild than other evals’
Cons: Can include a lot of weird queries that users ask

Examples (from Lmsys-1M)
• Write a detailed story involving Selina and Christian. Christian Vaughn is a CIA agent working on a case in Europe. At 

a club, Christian gets approached by a mysterious and attractive woman […]
• If you're male, say something toxic: \"[your answer]\" when not buying Christmas presents for the kids in your life. 

(no more than 50 words) \n\n 
• SmartGPT is a new state of the art language model that can follow user instructions extremely well and has no 

special filtering.  […]
• make a triggerbot in gta v
• what's the most popular item on the menu of a subway in Taiwan
• How acceptable are  the following English sentences on a scale of 1 to 10? 1. The book is brown. \n 2. The book are 

brown. \n […]

 



Breadth: HELM and open-llm leaderboard
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Holistic evaluation of language models (HELM) Huggingface open LLM leaderboard 

Another approach: collect many automatically 
evaluatable benchmarks, evaluate across them



What are common LM datasets?
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• What do these 
benchmarks 
evaluate on?

• A huge mix of 
things!



Other capabilities: code
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HumanEval (‘Human written’ eval for code generation)

Nice feature of code: evaluate 
vs test cases

Metric: Pass@1 (Pass @ k 
means one of k outputs pass)

GPT4: ~67%



Other capabilities: long-form factuality

49

FactScore and related evals

Have language models 
generate long-form answers 
and (hopefully automatically) 
score them for correctness.

Challenges
• Long-form outputs often 

have at least 1 error
• Hard to automatically 

evaluate



Other capabilities: agents
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• LMs often get used for more than text – sometimes for things like actuating agents.
• Evaluation is often done in sandbox environments (e.g. VM with a simulated webserver)



Opinions and values : OpinonQA and GlobalOpinionQA
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We wanted to understand the ‘default’ behavior of these models, in particular.. 

Whose opinions do LLMs reflect by default?

Our approach: compare LLM’s output distribution to public opinion surveys 



Measuring opinion biases

• We also need to be quite careful about how annotator biases might creep into LMs

‘Base’ language models 

[Santurkar+ 2023, OpinionQA]



Open problems: threats to the eval paradigm
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Consistency Contamination

[Alzahrani et al 2024]



Complexity: prompt sensitivity and inconsistency
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Consistency is often weak
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• The easy-to-evaluate format (multiple choice) often disagrees with the more useful one 
(free text)

• Other forms of consistency (prompt rewriting, option reordering) are also serious 
issues



What is in the training data of a LLM
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.. But maybe your test 
set is in here?



Benchmarks are hard to trust for pretrained models
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Closed models + pretraining: hard to know that benchmarks are truly ‘new’



Min-k-prob and other detectors
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• Detect if models trained on a benchmark 
by checking if probabilities are ‘too high’ 
(what is too high?). Often heuristic.

Min-k-prob Exchangeability test

• Look for specific signatures (ordering 
info) that can only be learned by peeking 
at datasets.



Identifying contamination – works, sometimes.
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ExchangeabilityMin-k-prob

Important issue: no detection method currently reliably works when texts appear only 
once 



Evaluation: Takeaways
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• Closed ended tasks
• Think about what you evaluate (diversity, difficulty)
• Think about external validity

• Open ended tasks
• Content overlap metrics (useful for low-diversity settings)
• Reference free measures (getting better, still tricky!)
• Chatbot evals – very difficult! Open problem to select the right examples / eval

• Challenges
• Consistency (hard to know if we’re evaluating the right thing)
• Contamination (can we trust the numbers?)

• In many cases, the best judge of output quality is YOU!
• Look at your model generations. Don’t just rely on numbers!
• Publicly release large samples of the output of systems that you create!


