
[draft] Note 10: Self-Attention & Transformers 1
1 Course Instructors: Christopher
Manning, John Hewitt2 CS 224n: Natural Language Processing with Deep Learning
2 Author: John Hewitt
johnhew@cs.stanford.eduWinter 2023

Summary. This note motivates moving away from recurrent archi-
tectures in NLP, introduces self-attention, and builds a minimal self-
attention-based neural architecture. Finally, it dives into the details of
the Transformer architecture, a self-attention-based architecture that
as of 2023 is ubiquitous in NLP research.

Embeddings

Add Position
Embeddings

Multi-Head
Attention

Add & Norm

Feed-Forward

Add & Norm

Embeddings

Add Position
Embeddings

Block

Masked Multi-
Head Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed-Forward

Linear

Softmax

Add & Norm

Block

Repeat for number of
encoder blocks

Repeat for number of
decoder blocks.

Attend only to output of
last Encoder Block.

Probabilities

Decoder Inputs

Encoder Inputs

Transformer Encoder-Decoder

1 Neural architectures and their properties

Progress in natural language processing is often accelerated by
general-purpose techniques that perform better than earlier meth-
ods across a wide range of settings. Sometimes, a new idea is
proposed to solve old problems; other times, old techniques be-
come newly relevant as data or computation power becomes newly
available. A few examples of these include hidden Markov models
[Baum and Petrie, 1966], conditional random fields [Lafferty et al., 2001],
recurrent neural networks [Rumelhart et al., 1985], convolutional
neural networks [LeCun et al., 1989], and support vector machines
[Cortes and Vapnik, 1995].

In this section, we’ll discuss a bit about the neural modeling ap-
proaches we’ve discussed in Cs 224n so far, and how their limitations
(and changes in the world) inspired the modern (as of 2023) zeitgeist
of self-attention and Transformer-based architectures.

1.1 Notation and basics

Let w1:n be a sequence, where each wi ∈ V , a finite vocabulary. We’ll
also overload w1:n to be a matrix of one-hot vectors, w1:n ∈ Rn×|V|.
We’ll use w ∈ V to represent an arbitrary vocabulary element, and
wi ∈ V to pick out a specific indexed element of a sequence w1:n.
We’ll use the notation,

wt ∼ softmax(f (w1:t−1)), (1)

to mean that under a model, wt “is drawn from” the probability
distribution defined by the right-hand-side of the tilde, ∼. So in this
case, f (w1:t−1) should be in R|V|. When we use the softmax function
(as above), we’ll use it without direct reference to the dimension

johnhew@cs.stanford.edu

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 2

being normalized over, and it should be interpreted as follows. If A is
a tensor of shape Rℓ,d, the softmax is computed as follows:

softmax(A)i,j =
exp Ai,j

∑d
j′=1 exp Ai,j′

, (2)

for all i ∈ 1, . . . , ℓ, j ∈ 1, . . . , d, and similarly for tensors of more than
two axes. That is, if we had a tensor B ∈ Rm,ℓ,d, we would define
the softmax over the last dimension, similarly. At the risk of being
verbose, we’ll write it out:

softmax(B)q,i,j =
exp Bq,i,j

∑d
j′=1 exp Bq,i,j′

. (3)

In all of our methods, we’ll assume an embedding matrix, E ∈
Rd×|V|, mapping from the vocabulary space to the hidden dimensional-
ity d, written as Ex ∈ Rd. Embedding definition

The embedding Ewi of a token in sequence w1:n is what’s known
as a non-contextual representation; despite wi appearing in a se-
quence, the representation Ewi is independent of context. Since we’ll
almost always be working on the embedded version of w1:n, we’ll
let x = Ew, and x1:n = w1:nE⊤ ∈ Rn×d. An overarching goal of
the methods discussed in this note is to develop strong contextual
representations of tokens; that is, a representation hi that represents
wi but is a function of the entire sequence x1:n (or a prefix x1:i, as in
the case of language modeling.). A non-contextual representation of

a token xi of sequence x1:n depends
only on the identity of xi ; a contextual
representation of xi depends on the
entire sequence (or a prefix x1:i .)

1.2 The default circa 2017: recurrent neural networks

General-purpose modeling techniques and representations have a
long history in NLP, with individual techniques falling in and out of
favor. Word embeddings, for example, have a much longer history
than the word2vec embeddings we studied in the first few lectures
[Schütze, 1992]. Likewise, recurrent neural networks have a long
and non-monotonic history in modeling problems [Elman, 1990,
Bengio et al., 2000]. By 2017, however, the basic strategy to solve
a natural language processing task was to begin with a recurrent
neural network.

We’ve gone over RNNs earlier in the course, but the general form
bears repeating here. A simple form of RNN is as follows:

ht = σ(W ht−1 + Uxt), (4)

Dependence on the sequence index

where ht ∈ Rd, U ∈ Rd×d, and W ∈ Rd×d. By 2017, the intuition
was that there were twofold issues with the recurrent neural net-
work form, and they both had to do with the the depenence on the

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 3

sequence index (often called the dependence on “time”) highlighted
in Equation 4.

Parallelization issues with dependence on the sequence index. Modern
graphics processing units (GPUs) are excellent at crunching through
a lot of simple operations (like addition) in parallel. For example,
when I have a matrix A ∈ Rn×k and a matrix B ∈ Rk×d, a GPU is
just blazing fast at computing AB ∈ Rn×d. The constraint of the
operations occuring in parallel, however, is crucial – when computing
AB the simplest way, I’m performing a bunch of multiplies and then
a bunch of sums, most of which don’t depend on the output of each
other. However, in a recurrent neural network, when I compute

h2 = σ(Wh1 + Ux2), (5)

I can’t compute h2 until I know the value of h1, so we can write it out
as

h2 = σ(Wσ(Wh0 + Ux1) + Ux2). (6)

Likewise if I wanted to compute h3, I can’t compute it until I know
h2, which I can’t compute until I know h1, etc. Visually, this looks
like Figure 1. As the sequence gets longer, there is only so much I
can parallelize the computation of the network on a GPU because
of the number of serial dependencies. (Serial meaning one-after-the-
other.)

1 2 3 4 5

0 0 0 0 0

Zuko made his uncle tea

Figure 1: A RNN unrolled in time.
The rectangles are intermediate states
of the RNN (e.g., the first row is the
embedding layer, and the second row is
the RNN hidden state at each time step)
and the number in the rectangle is the
number of serial operations that need to
be performed before this intermediate
state can be computed

As GPUs (and later, other accelerators like Tensor Processing Units
(TPUs) became more powerful and researchers wanted to take fuller
advantage of them, this dependence in time became untenable.

Linear interaction distance. A related issue with RNNs is the diffi-
culty with which distant tokens in a sequence can interact with each
other. By interact, we mean that the presence of one token (already
observed in the past) gainfully affects the processing of another token.
For example, in the sentence

The chef1 who ran out of blackberries and went to the stores is1

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 4

the number of intermediate computations—matrix multiplies and
nonlinearities, for example—that separate chef from is scales with the
number of words between them. We visualize this in Figure 2.

12345

0

Zuko made his uncle tea

Figure 2: A RNN unrolled in time.
The rectangles are intermediate states
of the RNN (e.g., the first row is the
embedding layer, and the second row
is the RNN hidden state at each time
step) and the number in the rectangle
is roughly the number of operations
separating lexical information of the
word tea from each intermediate state.

Intuitively, researchers believe there’s an issue with linear inter-
action distance because it can be difficult for networks to precisely
“recall” the presence of a word when a large number of operations
occur after observing that word. This can make it difficult to learn
how distant words should impact the representation of the current
word.

This notion of direct interaction between elements of a sequence
might remind you of the attention mechanism [Bahdanau et al., 2014]
in machine translation. In that context, while generating a translation,
we learned how to look back into the source sequence once per token
of the translation. In this note, we’ll present an entire replacement
for recurrent neural networks just based on attention. This will solve
both the parallelization issues and the linear interaction distance
issues with recurrent neural networks.

2 A minimal self-attention architecture

Attention, broadly construed, is a method for taking a query, and
softly looking up information in a key-value store by picking the
value(s) of the key(s) most like the query. By “picking” and “most
like,” we mean averaging overall values, putting more weight on
those which correspond to the keys more like the query. In self-
attention, we mean that we use the same elements to help us define
the querys as we do the keys and values.

In this section, we’ll discuss how to develop contextual representa-
tions with methods wherein the main mechanism for contextualiza-
tion is not recurrence, but attention.

2.1 The key-query-value self-attention mechanism

There are many forms of self-attention; the form we’ll discuss here is
currently the most popular. It’s called key-query-value self-attention.

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 5

Consider a token xi in the sequence x1:n. From it, we define a
query qi = Qxi, for matrix Q ∈ Rd×d. Then, for each token in the
sequence xj ∈ {x1 . . . , xn}, we define both a key and a value similarly,
with two other weight matrices: kj = Kxj, and vj = Vxj for K ∈ Rd×d

and V ∈ Rd×d.
Our contextual representation hi of xi is a linear combination (that

is, a weighted sum) of the values of the sequence,

hi =
n

∑
j=1

αijvj, (7)

where the weights, these αij control the strength of contribution of
each vj. Going back to our key-value store analogy, the αij softly se-
lects what data to look up. We define these weights by computing the
affinities between the keys and the query, q⊤i k j, and then computing
the softmax over the sequence:

αij =
exp(q⊤

i kj)

∑n
j′=1 exp(q⊤

i kj′)
(8)

Intuitively, what we’ve done by this operation is take our element
xi and look in its own sequence x1:n to figure out what information
(in an informal sense,) from what other tokens, should be used in
representing xi in context. The use of matrices K, Q, V intuitively
allow us to use different views of the xi for the different roles of
key, query, and value. We perform this operation to build hi for all
i ∈ {1, . . . , n}.

v1:n =Vx1:n k1:n =Kx1:n

qi =Qxi (query)

(weights)

(weighted average)

(key)(value)

hi = αij vj

α qi
Tkj -> softmax

∑
scalar

vector

Self-Attention

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 6

2.2 Position representations

Consider the sequence the oven cooked the bread so. This is a different
sequence than the bread cooked the oven so, as you might guess. The for-
mer sentence has us making delicious bread, and the latter we might
interpret as the bread somehow breaking the oven. In a recurrent
neural network, the order of the sequence defines the order of the
rollout, so the two sequences have different representations. In the
self-attention operation, there’s no built-in notion of order. The self-attention operation has no

built-in notion of the sequence order.To see this, let’s take a look at self-attention on this sequence. We
have a set of vectors x1:n for the oven cooked the bread so, which we can
write as

x1:n = [xthe; xoven; xcooked; xthe; xbread; xso] ∈ R5×d (9)

As an example, consider performing self-attention to represent the
word so in context. The weights over the context are as follows,
recalling that qi = Qxi for all words, and ki = Kxi likewise:

αso = softmax
([

q⊤
sokthe; q⊤

sokoven; q⊤
sokcooked; q⊤

sokthe; q⊤
sokbread; q⊤

sokso

])
(10)

So, the weight αso,0, the amount that we look up the first word, (by
writing out the softmax) is,

αso,0 =
exp(q⊤

sokthe)

exp(q⊤
sokthe) + · · ·+ exp(q⊤

sokbread)
. (11)

So, α ∈ R5 are our weights, and we compute the weighted average in
Equation 7 with these weights to compute hso.

For the reordered sentence the bread cooked the oven, note that αso,0

is identical. The numerator hasn’t changed, and the denominator
hasn’t changed; we’ve just rearranged terms in the sum. Likewise
for αso,bread and αso,oven, you can compute that they too are identical
independent of the ordering of the sequence. This all comes back
down to the two facts that (1) the representation of x is not position-
dependent; it’s just Ew for whatever word w, and (2) there’s no
dependence on position in the self-attention operations. Non-contextual embedded words

xi = Ewi have no dependence on the
word’s position in a sequence w1:n; only
on the identity of the word in V .Position representation through learned embeddings. To represent po-

sition in self-attention, you either need to (1) use vectors that are
already position-dependent as inputs, or (2) change the self-attention
operation itself. One common solution is a simple implementation
of (1). We posit a new parameter matrix, P ∈ RN×d, where N is
the maximum length of any sequence that your model will be able to
process.

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 7

We then simply add embedded representation of the position of a
word to its word embedding:

x̃i = Pi + xi (12)

and perform self-attention as we otherwise would. Now, the self-
attention operation can use the embedding Pi to look at the word at
position i differently than if that word were at position j. This is done,
e.g., in the BERT paper [Devlin et al., 2019] (which we go over later in
the course.)

Position representation through changing α directly. Instead of chang-
ing the input representation, another thing we can do is change
the form of self-attention to have a built-in notion of position. One
intuition is that all else held equal, self-attention should look at
“nearby” words more than “far” words. Attention with Linear Biases
[Press et al., 2022] is one implementation of this idea. One implemen-
tation of this would be as follows:

αi = softmax (k1:nqi + [−i, . . . ,−1, 0,−1, . . . ,−(n − i)]) , (13)

where k1:nqi ∈ Rn are the original attention scores, and the bias
we add makes attention focus more on nearby words than far away
words, all else held equal. In some sense, it’s odd that this works; but
interesting!

2.3 Elementwise nonlinearity

Imagine if we were to stack self-attention layers. Would this be
sufficient for a replacement for stacked LSTM layers? Intuitively,
there’s one thing that’s missing: the elementwise nonlinearities that
we’ve come to expect in standard deep learning architectures. In fact,
if we stack two self-attention layers, we get something that looks a lot
like a single self-attention layer:

oi =
n

∑
j=1

αijV(2)

(
n

∑
k=1

αjkV(1)xk

)
(14)

=
n

∑
k=1

(
αjk

n

∑
j=1

αij

)
V(2)V(1)xk (15)

=
n

∑
k=1

α∗ijV
∗xk, (16)

where α∗ij =
(

αjk ∑n
j=1 αij

)
, and V∗ = V(2)V(1). So, this is just a linear

combination of a linear transformation of the input, much like a
single layer of self-attention! Is this good enough?3 3 This question ends up having a

nuanced answer that’s out-of-scope for
this note; ask me if you’re interested in
knowing more!

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 8

In practice, after a layer of self-attention, it’s common to apply
feed-forward network independently to each word representation:

hFF = W2 ReLU(W1hself-attention + b1) + b2, (17)

where often, W1 ∈ R5d×d, and W2 ∈ Rd×5d. That is, the hidden
dimension of the feed-forward network is substantially larger than
the hidden dimension of the network, d—this is done because this
matrix multiply is an efficiently parallelizable operation, so it’s an
efficient place to put a lot of computation and parameters.

2.4 Future masking

When performing language modeling like we’ve seen in this course
(often called autoregressive modeling), we predict a word given all
words so far:

wt ∼ softmax(f (w1:t−1)). (18)

where f is function to map a sequence to a vector in R|V|.
One crucial aspect of this process is that we can’t look at the future

when predicting it—otherwise the problem becomes trivial. This idea
is built-in to unidirectional RNNs. If we want to use an RNN for the
function f , we can use the hidden state for word wt−1:

wt ∼ softmax(ht−1E) (19)

ht−1 = σ(Wht−2 + Uxt−1), (20)

and by the rollout of the RNN, we haven’t looked at the future. (In
this case, the future is all the words wt, . . . , wn.)

In a Transformer, there’s nothing explicit in the self-attention
weight α that says not to look at indices j > i when representing
token i. In practice, we enforce this constraint simply adding a large
negative constant to the input to the softmax (or equivalently, setting
αij = 0 where j > i.)4 4 It might seem like one should use −∞

as the constant, to “really” ensure that
you can’t see the future. However, this
is not done; a modest constant within
even the float range of the ‘float16‘
encoding is used instead, like −105.
Using infinity can lead to NaNs and
it’s sort of undefined how each library
should treat infinite inputs, so we tend
to avoid using it. And because of finite
precision, a large enough negative
constant will still set the attention
weight to exactly zero.

αij,masked =

αij j ≤ i

0 otherwise
(21)

In a diagram, it looks like Figure 3.

2.5 Summary of a minimal self-attention architecture

Our minimal self-attention architecture has (1) the self-attention
operation, (2) position representations, (3) elementwise nonlinearities,
and (4) future masking (in the context of language modeling.)

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 9

Zuko made his uncle tea

Zuko

made

his

uncle

tea

−∞ −∞

−∞

−∞

−∞

−∞

−∞

−∞

−∞

−∞

Figure 3: Diagram of autoregressive
future masking in self-attention. Words
in each row have words in the future
masked out (e.g., “Zuko” can only
attend to “Zuko”, while “made” can
attend to “Zuko” and “made”.)

Intuitively, these are the biggest components to understand. How-
ever, as of 2023, by far the most-used architecture in NLP is called
the Transformer, introduced by [Vaswani et al., 2017], and it contains
a number of components that end up being quite important. So now
we’ll get into the details of that architecture.

3 The Transformer

The Transformer is an architecture based on self-attention that con-
sists of stacked Blocks, each of which contains self-attention and feed-
forward layers, and a few other components we’ll discuss. If you’d
like to take a peek for intuition, we have a diagram of a Transformer
language model architecture in Figure 4. The components we haven’t
gone over are multi-head self-attention, layer normalization, resid-
ual connections, and attention scaling—and of course, we’ll discuss
how these components are combined to form the Transformer.

Embeddings

Add Position
Embeddings

Masked Multi-
Head Attention

Add & Norm

Feed-Forward

Add & Norm

Block

Linear

Softmax

Re
pe

at
 f

or
 n

um
be

r o
f

en
co

de
r b

lo
ck

s

Probabilities

Decoder Inputs

Transformer Decoder
Figure 4: Diagram of the Transformer
Decoder (without corresponding
Encoder, and so no cross-attention.

3.1 Multi-head Self-Attention

Intuitively, a single call of self-attention is best at picking out a single
value (on average) from the input value set. It does so softly, by
averaging over all of the values, but it requires a balancing game in
the key-query dot products in order to carefully average two or more
things. In Assignment 5, you’ll work through a bit of this intuition
more carefully. What we’ll present now, multi-head self-attention,
intuitively applies self-attention multiple times at once, each with
different key, query, and value transformations of the same input,
and then combines the outputs.

For an integer number of heads k, we define matrices K(ℓ), Q(ℓ), V(ℓ) ∈
Rd×d/k for ℓ in {1, . . . , k}. (We’ll see why we have the dimensionality
reduction to d/k soon.) These our the key, query, and value matrices
for each head. Correspondingly, we get keys, queries, and values
k(ℓ)

1:n, q(ℓ)
1:n, v(ℓ)

1:n, as in single-head self-attention.

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 10

We then perform self-attention with each head:

h(ℓ)
i =

n

∑
j=1

α
(ℓ)
ij v(ℓ)

j (22)

α
(ℓ)
ij =

exp(q(ℓ)⊤
i k(ℓ)

j)

∑n
j′=1 exp(q(ℓ)⊤

i k(ℓ)
j′)

(23)

Note that the output h(ℓ)
i of each head is in reduced dimension d/k.

Finally, we define the output of multi-head self-attention as a linear
transformation of the concatenation of the head outputs, letting
O ∈ Rd×d:

hi = O
[
v(1)

i ; · · · ; v(k)
i

]
, (24)

where we concatenate the head outputs each of dimensionality d × d/k
at their second axis, such that their concatenation has dimension d × d.

Sequence-tensor form. To understand why we have the reduced
dimension of each head output, it’s instructive to get a bit closer to
how multi-head self-attention is implemented in code. In practice,
multi-head self-attention is no more expensive than single-head
due to the low-rankness of the transformations we apply.

For a single head, recall that x1:n is a matrix in Rn×d. Then we can
compute our value vectors as a matrix as x1:nV, and likewise our
keys and queries x1:nK and x1:nQ, all matrices in Rn×d. To compute
self-attention, we can compute our weights in matrix operations:

α = softmax(x1:nQK⊤x⊤1:n) ∈ Rn×n (25)

and then compute the self-attention operation for all x1:n via:

h1:n = softmax(x1:nQK⊤x⊤1:n)x1:nV ∈ Rn×d. (26)

Here’s a diagram showing the matrix ops:

x1:nQ
(x1:nK)T

n =

d

softmax n

n

α

When we perform multi-head self-attention in this matrix form,
we first reshape x1:nQ, x1:nK, and x1:nV each into a matrix of shape
Rn,k,d/k, splitting the model dimensionality into two axes, for the
number of heads and the number of dimensions per head. We can

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 11

then transpose the matrices to Rk,n,d/k, which intuitively should look
like k sequences of length n and dimensionality d/k. This allows
us to perform the batched softmax operation in parallel across the
heads, using the number of heads kind of like a batch axis (and
indeed in practice we’ll also have a separate batch axis.) So, the
total computation (except the last linear transformation to combine
the heads) is the same, just distributed across the (each lower-rank)
heads. Here’s a diagram like the single-head diagram, demonstrating
how the multi-head operation ends up much like the single-head
operation:

reshape(x1:nQ)

reshape((x1:nK)T)n =

d/k

softmax n

k

n

α

3.2 Layer Norm

One important learning aid in Transformers is layer normalization
[Ba et al., 2016]. The intuition of layer norm is to reduce uninforma-
tive variation in the activations at a layer, providing a more stable
input to the next layer. Further work shows that this may be most
useful not in normalizing the forward pass, but actually in improving
gradients in the backward pass [Xu et al., 2019].

To do this, layer norm (1) computes statistics across the activations
at a layer to estimate the mean and variance of the activations, and (2)
normalizes the activations with respect to those estimates, while (3)
optionally learning (as parameters) an elementwise additive bias and
multiplicative gain by which to sort of de-normalize the activations
in a predictable way. The third part seems not to be crucial, and may
even be harmful [Xu et al., 2019], so we omit it in our presentation.

One question to ask when understanding how layer norm affects
a network is, “computing statistics over what?” That is, what consti-
tutes a layer? In Transformers, the answer is always that statistics
computed independently for a single index into the sequence length
(and a single example in the batch) and shared across the d hidden
dimensions. Put another way, the statistics for the token at index i
won’t affect the token at index j ̸= i.

So, we compute the statistics for a single index i ∈ {1, . . . , n} as

µ̂i =
1
d

d

∑
j=1

hij σ̂i =

√√√√1
d

d

∑
j=1

(hij − µi)2, (27)

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 12

where (as a reminder), µ̂i and σ̂i are scalars, and we compute the
layer norm as

LN(hi) =
hi − µ̂i

σ̂i
, (28)

where we’ve broadcasted the µ̂i and σ̂i across the d dimensions of
hi. Layer normalization is a great tool to have in your deep learning
toolbox more generally.

3.3 Residual Connections

Residual connections simply add the input of a layer to the output of
that layer:

fresidual(h1:n) = f (h1:n) + h1:n, (29)

the intuition being that (1) the gradient flow of the identity function
is great (the local gradient is 1 everywhere!) so the connection allows
for learning much deeper networks, and (2) it is easier to learn the
difference of a function from the identity function than it is to learn
the function from scratch. As simple as these seem, they’re massively
useful in deep learning, not just in Transformers!

Add & Norm. In the Transformer diagrams you’ll see, including Fig-
ure 4, the application of layer normalization and residual connection
are often combined in a single visual block labeled Add & Norm. Such
a layer might look like:

hpre-norm = f (LN(h)) + h, (30)

where f is either a feed-forward operation or a self-attention opera-
tion, (this is known as pre-normalization), or like:

hpost-norm = LN(f (h) + h), (31)

which is known as post-normalization. It turns out that the gradients
of pre-normalization are much better at initialization, leading to
much faster training [Xiong et al., 2020].

3.4 Attention logit scaling

Another trick introduced in [Vaswani et al., 2017] they dub scaled dot
product attention. The dot product part comes from the fact that we’re
computing dot products q⊤

i k j. The intuition of scaling is that, when
the dimensionality d of the vectors we’re dotting grows large, the dot
product of even random vectors (e.g., at initialization) grows roughly
as

√
d. So, we normalize the dot products by

√
d to stop this scaling:

α = softmax(
x1:nQK⊤x⊤1:n√

d
) ∈ Rn×n (32)

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 13

3.5 Transformer Encoder

A Transformer Encoder takes a single sequence w1:n, and performs
no future masking. It embeds the sequence with E to make x1:n, adds
the position representation, and then applies a stack of independently
parameterized Encoder Blocks, each of which consisting of (1) multi-
head attention and Add & Norm, and (2) feed-forward and Add &
Norm. So, the output of each Block is the input to the next. Figure 5

presents this.

Embeddings

Add Position
Embeddings

Multi-Head
Attention

Add & Norm

Feed-Forward

Add & Norm

Block

Linear

Softmax

Re
pe

at
 f

or
 n

um
be

r o
f

en
co

de
r b

lo
ck

s

Probabilities

Encoder Inputs

Transformer Encoder
Figure 5: Diagram of the Transformer
Encoder.

In the case that one wants probabilities out of the tokens of a
Transformer Encoder (as in masked language modeling for BERT
[Devlin et al., 2019], which we’ll cover later), one applies a linear
transformation to the output space followed by a softmax.

Uses of the Transformer Encoder. A Transformer Encoder is great in
contexts where you aren’t trying to generate text autoregressively
(there’s no masking in the encoder so each position index can see
the whole sequence,) and want strong representations for the whole
sequence (again, possible because even the first token can see the
whole future of the sequence when building its representation.)

3.6 Transformer Decoder

To build a Transformer autoregressive language model, one uses a
Transformer Decoder. These differ from Transformer Encoders simply
by using future masking at each application of self-attention. This
ensures that the informational constraint (no cheating by looking at
the future!) holds throughout the architecture. We show a diagram
of this architecture in Figure 4. Famous examples of this are GPT-
2 [Radford et al., 2019], GPT-3 [Brown et al., 2020] and BLOOM
[Workshop et al., 2022].

3.7 Transformer Encoder-Decoder

A Transformer encoder-decoder takes as input two sequences. Fig-
ure 6 shows the whole encoder-decoder structure. The first sequence
x1:n is passed through a Transformer Encoder to build contextual
representations. The second sequence y1:m is encoded through a
modified Transformer Decoder architecture in which cross-attention
(which we haven’t yet defined!) is applied from the encoded repre-
sentation of y1:m to the output of the Encoder. So, let’s take a quick
detour to discuss cross-attention; it’s not too different from what
we’ve already seen.

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 14

Cross-Attention. Cross-attention uses one sequence to define the
keys and values of self-attention, and another sequence to define
the queries. You might think, hey wait, isn’t that just what attention
always was before we got into this self-attention business? Yeah,
pretty much. So if

h(x)
1:n = TransformerEncoder(w1:n), (33)

and we have some intermediate representation h(y) of sequence y1:m,
then we let the queries come from the decoder (the h(y) sequence)
while the keys and values come from the encoder:

qi = Qh(y)
i i ∈ {1, . . . , m} (34)

kj = Kh(x)
j j ∈ {1, . . . , n} (35)

vj = Vh(x)
j j ∈ {1, . . . , n}, (36)

and compute the attention on q, k, v as we defined for self-attention.
Note in Figure 6 that in the Transformer Encoder-Decoder, cross-
attention always applies to the output of the Transformer encoder.

Uses of the encoder-decoder. An encoder-decoder is used when we’d
like bidirectional context on something (like an article to summa-
rize) to build strong represenations (i.e., each token can attend to
all other tokens), but then generate an output according to an au-
toregressive decomposition as we can with a decoder. While such
an architecture has been found to provide better performance than
decoder-only models at modest scale [Raffel et al., 2020], it involves
splitting parameters between encoder and decoder, and most of the
largest Transformers are decoder-only.

.1

References

[Ba et al., 2016] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.
arXiv preprint arXiv:1607.06450.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine
translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

[Baum and Petrie, 1966] Baum, L. E. and Petrie, T. (1966). Statistical inference for
probabilistic functions of finite state markov chains. The Annals of Mathematical
Statistics, 37(6):1554–1563.

[Bengio et al., 2000] Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural
probabilistic language model. Advances in neural information processing systems, 13.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A
neural probabilistic language model. J. Mach. Learn. Res., 3:1137–1155.

[Brown et al., 2020] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhari-
wal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 15

Embeddings

Add Position
Embeddings

Multi-Head
Attention

Add & Norm

Feed-Forward

Add & Norm

Embeddings

Add Position
Embeddings

Block

Masked Multi-
Head Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed-Forward

Linear

Softmax

Add & Norm

Block

Repeat for number of
encoder blocks

Repeat for number of
decoder blocks.

Attend only to output of
last Encoder Block.

Probabilities

Decoder Inputs

Encoder Inputs

Transformer Encoder-Decoder

Figure 6: A Transformer encoder-
decoder.

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 16

A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models
are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H., editors, Advances in Neural Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc.

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu,
K., and Kuksa, P. P. (2011). Natural language processing (almost) from scratch. CoRR,
abs/1103.0398.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational
Linguistics.

[Elman, 1990] Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–
211.

[Fukushima and Miyake, 1982] Fukushima, K. and Miyake, S. (1982). Neocogni-
tron: A self-organizing neural network model for a mechanism of visual pattern
recognition. In Competition and cooperation in neural nets, pages 267–285. Springer.

[Lafferty et al., 2001] Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001).
Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of the Eighteenth International Conference on Machine
Learning, ICML ’01, page 282–289, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–551.

[Manning, 2022] Manning, C. D. (2022). Human Language Understanding & Reasoning.
Daedalus, 151(2):127–138.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient
estimation of word representations in vector space. CoRR, abs/1301.3781.

[Press et al., 2022] Press, O., Smith, N., and Lewis, M. (2022). Train short, test long:
Attention with linear biases enables input length extrapolation. In International
Conference on Learning Representations.

[Radford et al., 2019] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019). Language models are unsupervised multitask learners.

[Raffel et al., 2020] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena,
M., Zhou, Y., Li, W., and Liu, P. J. (2020). Exploring the limits of transfer learning
with a unified text-to-text transformer. The Journal of Machine Learning Research,
21(1):5485–5551.

[Rong, 2014] Rong, X. (2014). word2vec parameter learning explained. CoRR,
abs/1411.2738.

[Rumelhart et al., 1985] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985).
Learning internal representations by error propagation. Technical report, California
Univ San Diego La Jolla Inst for Cognitive Science.

[Rumelhart et al., 1988] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988).
Neurocomputing: Foundations of research. chapter Learning Representations by
Back-propagating Errors, pages 696–699. MIT Press, Cambridge, MA, USA.

[Schütze, 1992] Schütze, H. (1992). Dimensions of meaning. In Proceedings of the
1992 ACM/IEEE Conference on Supercomputing, Supercomputing ’92, page 787–796,
Washington, DC, USA. IEEE Computer Society Press.

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 17

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need.
Advances in neural information processing systems, 30.

[Workshop et al., 2022] Workshop, B., :, Scao, T. L., Fan, A., Akiki, C., Pavlick, E.,
Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M., Tow, J., Rush,
A. M., Biderman, S., Webson, A., Ammanamanchi, P. S., Wang, T., Sagot, B., Muen-
nighoff, N., del Moral, A. V., Ruwase, O., Bawden, R., Bekman, S., McMillan-Major,
A., Beltagy, I., Nguyen, H., Saulnier, L., Tan, S., Suarez, P. O., Sanh, V., Laurençon,
H., Jernite, Y., Launay, J., Mitchell, M., Raffel, C., Gokaslan, A., Simhi, A., Soroa,
A., Aji, A. F., Alfassy, A., Rogers, A., Nitzav, A. K., Xu, C., Mou, C., Emezue, C.,
Klamm, C., Leong, C., van Strien, D., Adelani, D. I., Radev, D., Ponferrada, E. G.,
Levkovizh, E., Kim, E., Natan, E. B., De Toni, F., Dupont, G., Kruszewski, G., Pis-
tilli, G., Elsahar, H., Benyamina, H., Tran, H., Yu, I., Abdulmumin, I., Johnson, I.,
Gonzalez-Dios, I., de la Rosa, J., Chim, J., Dodge, J., Zhu, J., Chang, J., Frohberg, J.,
Tobing, J., Bhattacharjee, J., Almubarak, K., Chen, K., Lo, K., Von Werra, L., Weber,
L., Phan, L., allal, L. B., Tanguy, L., Dey, M., Muñoz, M. R., Masoud, M., Grandury,
M., Šaško, M., Huang, M., Coavoux, M., Singh, M., Jiang, M. T.-J., Vu, M. C., Jauhar,
M. A., Ghaleb, M., Subramani, N., Kassner, N., Khamis, N., Nguyen, O., Espejel,
O., de Gibert, O., Villegas, P., Henderson, P., Colombo, P., Amuok, P., Lhoest, Q.,
Harliman, R., Bommasani, R., López, R. L., Ribeiro, R., Osei, S., Pyysalo, S., Nagel,
S., Bose, S., Muhammad, S. H., Sharma, S., Longpre, S., Nikpoor, S., Silberberg, S.,
Pai, S., Zink, S., Torrent, T. T., Schick, T., Thrush, T., Danchev, V., Nikoulina, V., Laip-
pala, V., Lepercq, V., Prabhu, V., Alyafeai, Z., Talat, Z., Raja, A., Heinzerling, B., Si,
C., Taşar, D. E., Salesky, E., Mielke, S. J., Lee, W. Y., Sharma, A., Santilli, A., Chaffin,
A., Stiegler, A., Datta, D., Szczechla, E., Chhablani, G., Wang, H., Pandey, H., Stro-
belt, H., Fries, J. A., Rozen, J., Gao, L., Sutawika, L., Bari, M. S., Al-shaibani, M. S.,
Manica, M., Nayak, N., Teehan, R., Albanie, S., Shen, S., Ben-David, S., Bach, S. H.,
Kim, T., Bers, T., Fevry, T., Neeraj, T., Thakker, U., Raunak, V., Tang, X., Yong, Z.-X.,
Sun, Z., Brody, S., Uri, Y., Tojarieh, H., Roberts, A., Chung, H. W., Tae, J., Phang, J.,
Press, O., Li, C., Narayanan, D., Bourfoune, H., Casper, J., Rasley, J., Ryabinin, M.,
Mishra, M., Zhang, M., Shoeybi, M., Peyrounette, M., Patry, N., Tazi, N., Sanseviero,
O., von Platen, P., Cornette, P., Lavallée, P. F., Lacroix, R., Rajbhandari, S., Gandhi, S.,
Smith, S., Requena, S., Patil, S., Dettmers, T., Baruwa, A., Singh, A., Cheveleva, A.,
Ligozat, A.-L., Subramonian, A., Névéol, A., Lovering, C., Garrette, D., Tunuguntla,
D., Reiter, E., Taktasheva, E., Voloshina, E., Bogdanov, E., Winata, G. I., Schoelkopf,
H., Kalo, J.-C., Novikova, J., Forde, J. Z., Clive, J., Kasai, J., Kawamura, K., Hazan, L.,
Carpuat, M., Clinciu, M., Kim, N., Cheng, N., Serikov, O., Antverg, O., van der Wal,
O., Zhang, R., Zhang, R., Gehrmann, S., Mirkin, S., Pais, S., Shavrina, T., Scialom,
T., Yun, T., Limisiewicz, T., Rieser, V., Protasov, V., Mikhailov, V., Pruksachatkun,
Y., Belinkov, Y., Bamberger, Z., Kasner, Z., Rueda, A., Pestana, A., Feizpour, A.,
Khan, A., Faranak, A., Santos, A., Hevia, A., Unldreaj, A., Aghagol, A., Abdollahi,
A., Tammour, A., HajiHosseini, A., Behroozi, B., Ajibade, B., Saxena, B., Ferrandis,
C. M., Contractor, D., Lansky, D., David, D., Kiela, D., Nguyen, D. A., Tan, E., Bay-
lor, E., Ozoani, E., Mirza, F., Ononiwu, F., Rezanejad, H., Jones, H., Bhattacharya, I.,
Solaiman, I., Sedenko, I., Nejadgholi, I., Passmore, J., Seltzer, J., Sanz, J. B., Dutra,
L., Samagaio, M., Elbadri, M., Mieskes, M., Gerchick, M., Akinlolu, M., McKenna,
M., Qiu, M., Ghauri, M., Burynok, M., Abrar, N., Rajani, N., Elkott, N., Fahmy,
N., Samuel, O., An, R., Kromann, R., Hao, R., Alizadeh, S., Shubber, S., Wang, S.,
Roy, S., Viguier, S., Le, T., Oyebade, T., Le, T., Yang, Y., Nguyen, Z., Kashyap, A. R.,
Palasciano, A., Callahan, A., Shukla, A., Miranda-Escalada, A., Singh, A., Beilharz,
B., Wang, B., Brito, C., Zhou, C., Jain, C., Xu, C., Fourrier, C., Periñán, D. L., Molano,
D., Yu, D., Manjavacas, E., Barth, F., Fuhrimann, F., Altay, G., Bayrak, G., Burns, G.,
Vrabec, H. U., Bello, I., Dash, I., Kang, J., Giorgi, J., Golde, J., Posada, J. D., Sivara-
man, K. R., Bulchandani, L., Liu, L., Shinzato, L., de Bykhovetz, M. H., Takeuchi, M.,
Pàmies, M., Castillo, M. A., Nezhurina, M., Sänger, M., Samwald, M., Cullan, M.,
Weinberg, M., De Wolf, M., Mihaljcic, M., Liu, M., Freidank, M., Kang, M., Seelam,
N., Dahlberg, N., Broad, N. M., Muellner, N., Fung, P., Haller, P., Chandrasekhar,
R., Eisenberg, R., Martin, R., Canalli, R., Su, R., Su, R., Cahyawijaya, S., Garda,
S., Deshmukh, S. S., Mishra, S., Kiblawi, S., Ott, S., Sang-aroonsiri, S., Kumar, S.,
Schweter, S., Bharati, S., Laud, T., Gigant, T., Kainuma, T., Kusa, W., Labrak, Y.,
Bajaj, Y. S., Venkatraman, Y., Xu, Y., Xu, Y., Xu, Y., Tan, Z., Xie, Z., Ye, Z., Bras, M.,

[draft] note 10: self-attention & transformers cs 224n: natural language processing

with deep learning 18

Belkada, Y., and Wolf, T. (2022). Bloom: A 176b-parameter open-access multilingual
language model.

[Xiong et al., 2020] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang,
H., Lan, Y., Wang, L., and Liu, T. (2020). On layer normalization in the transformer
architecture. In International Conference on Machine Learning, pages 10524–10533.
PMLR.

[Xu et al., 2019] Xu, J., Sun, X., Zhang, Z., Zhao, G., and Lin, J. (2019). Understanding
and improving layer normalization. Advances in Neural Information Processing Systems,
32.

	Neural architectures and their properties
	A minimal self-attention architecture
	The Transformer

