
CS224n: Natural Language Processing with Deep
Learning 1

1 Course Instructors: Christopher
Manning, Richard SocherLecture Notes: Part V

Language Models, RNN, GRU and LSTM 2
2 Authors: Milad Mohammadi, Rohit
Mundra, Richard Socher, Lisa Wang,
Amita KamathWinter 2019

Keyphrases: Language Models. RNN. Bi-directional RNN. Deep
RNN. GRU. LSTM.

1 Language Models

1.1 Introduction

Language models compute the probability of occurrence of a number
of words in a particular sequence. The probability of a sequence of
m words {w1, ..., wm} is denoted as P(w1, ..., wm). Since the number
of words coming before a word, wi, varies depending on its location
in the input document, P(w1, ..., wm) is usually conditioned on a
window of n previous words rather than all previous words:

P(w1, ..., wm) =
i=m

∏
i=1

P(wi|w1, ..., wi−1) ≈
i=m

∏
i=1

P(wi|wi−n, ..., wi−1) (1)

Equation 1 is especially useful for speech and translation systems
when determining whether a word sequence is an accurate transla-
tion of an input sentence. In existing language translation systems,
for each phrase / sentence translation, the software generates a num-
ber of alternative word sequences (e.g. {I have, I had, I has, me have, me
had}) and scores them to identify the most likely translation sequence.

In machine translation, the model chooses the best word ordering
for an input phrase by assigning a goodness score to each output
word sequence alternative. To do so, the model may choose between
different word ordering or word choice alternatives. It would achieve
this objective by running all word sequence candidates through a
probability function that assigns each a score. The sequence with
the highest score is the output of the translation. For example, the
machine would give a higher score to "the cat is small" compared
to "small the is cat", and a higher score to "walking home after school"
compared to "walking house after school".

1.2 n-gram Language Models

To compute the probabilities mentioned above, the count of each n-
gram could be compared against the frequency of each word. This is

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 2

called an n-gram Language Model. For instance, if the model takes
bi-grams, the frequency of each bi-gram, calculated via combining a
word with its previous word, would be divided by the frequency of
the corresponding uni-gram. Equations 2 and 3 show this relation-
ship for bigram and trigram models.

p(w2|w1) =
count(w1, w2)

count(w1)
(2)

p(w3|w1, w2) =
count(w1, w2, w3)

count(w1, w2)
(3)

The relationship in Equation 3 focuses on making predictions
based on a fixed window of context (i.e. the n previous words) used
to predict the next word. But how long should the context be? In
some cases, the window of past consecutive n words may not be suf-
ficient to capture the context. For instance, consider the sentence "As
the proctor started the clock, the students opened their ". If the
window only conditions on the previous three words "the students
opened their", the probabilities calculated based on the corpus may
suggest that the next word be "books" - however, if n had been large
enough to include the "proctor" context, the probability might have
suggested "exam".

This leads us to two main issues with n-gram Language Models:
Sparsity and Storage.

1. Sparsity problems with n-gram Language models
Sparsity problems with these models arise due to two issues.

Firstly, note the numerator of Equation 3. If w1, w2 and w3 never
appear together in the corpus, the probability of w3 is 0. To solve
this, a small δ could be added to the count for each word in the
vocabulary. This is called smoothing.

Secondly, consider the denominator of Equation 3. If w1 and w2

never occurred together in the corpus, then no probability can be
calculated for w3. To solve this, we could condition on w2 alone.
This is called backoff.

Increasing n makes sparsity problems worse. Typically, n ≤ 5.

2. Storage problems with n-gram Language models
We know that we need to store the count for all n-grams we saw in
the corpus. As n increases (or the corpus size increases), the model
size increases as well.

1.3 Window-based Neural Language Model

The "curse of dimensionality" above was first tackled by Bengio et
al in A Neural Probabilistic Language Model, which introduced the

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 3

first large-scale deep learning for natural language processing model.
This model learns a distributed representation of words, along with the
probability function for word sequences expressed in terms of these
representations. Figure 1 shows the corresponding neural network
architecture. The input word vectors are used by both the hidden
layer and the output layer.

Equation 4 represents Figure 1 and shows the parameters of the
softmax() function, consisting of the standard tanh() function (i.e.
the hidden layer) as well as the linear function, W(3)x + b(3), that
captures all the previous n input word vectors.

Figure 1: The first deep neural network
architecture model for NLP presented
by Bengio et al.

Figure 2: A simplified representation of
Figure 1.

ŷ = softmax(W(2)tanh(W(1)x + b(1)) + W(3)x + b(3)) (4)

Note that the weight matrix W(1) is applied to the word vectors (solid
green arrows in Figure 1), W(2) is applied to the hidden layer (also
solid green arrow) and W(3) is applied to the word vectors (dashed
green arrows).

A simplified version of this model can be seen in Figure 2, where
the blue layer signifies concatenated word embeddings for the input
words: e = [e(1); e(2); e(3); e(4)], the red layer signifies the hidden layer:
h = f (We + b1), and the green output distribution is a softmax over
the vocabulary: ŷ = softmax(Uh + b2).

2 Recurrent Neural Networks (RNN)

Unlike the conventional translation models, where only a finite win-
dow of previous words would be considered for conditioning the
language model, Recurrent Neural Networks (RNN) are capable of
conditioning the model on all previous words in the corpus.

xt−1 xt xt+1

ht−1 ht ht+1

W" W"

yt−1 yt yt+1

Figure 3: A Recurrent Neural Network
(RNN). Three time-steps are shown.

Figure 3 introduces the RNN architecture where each vertical rect-
angular box is a hidden layer at a time-step, t. Each such layer holds
a number of neurons, each of which performs a linear matrix oper-
ation on its inputs followed by a non-linear operation (e.g. tanh()).
At each time-step, there are two inputs to the hidden layer: the out-
put of the previous layer ht−1, and the input at that timestep xt. The
former input is multiplied by a weight matrix W(hh) and the latter
by a weight matrix W(hx) to produce output features ht, which are
multiplied with a weight matrix W(S) and run through a softmax
over the vocabulary to obtain a prediction output ŷ of the next word
(Equations 5 and 6). The inputs and outputs of each single neuron
are illustrated in Figure 4.

ht = σ(W(hh)ht−1 + W(hx)x[t]) (5)

ŷt = so f tmax(W(S)ht) (6)

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 4

What is interesting here is that the same weights W(hh) and W(hx) are
applied repeatedly at each timestep. Thus, the number of parameters
the model has to learn is less, and most importantly, is independent
of the length of the input sequence - thus defeating the curse of di-
mensionality!

Figure 4: The inputs and outputs to a
neuron of a RNN

Below are the details associated with each parameter in the net-
work:

• x1, ..., xt−1, xt, xt+1, ...xT : the word vectors corresponding to a cor-
pus with T words.

• ht = σ(W(hh)ht−1 + W(hx)xt): the relationship to compute the
hidden layer output features at each time-step t

– xt ∈ Rd: input word vector at time t.

– Whx ∈ RDh×d: weights matrix used to condition the input word
vector, xt

– Whh ∈ RDh×Dh : weights matrix used to condition the output of
the previous time-step, ht−1

– ht−1 ∈ RDh : output of the non-linear function at the previous
time-step, t − 1. h0 ∈ RDh is an initialization vector for the
hidden layer at time-step t = 0.

– σ(): the non-linearity function (sigmoid here)

• ŷt = so f tmax(W(S)ht): the output probability distribution over the
vocabulary at each time-step t. Essentially, ŷt is the next predicted
word given the document context score so far (i.e. ht−1) and the
last observed word vector x(t). Here, W(S) ∈ R|V|×Dh and ŷ ∈ R|V|

where |V| is the vocabulary.

Figure 5: An RNN Language Model

An example of an RNN language model is shown in Figure 5.
The notation in this image is slightly different: here, the equivalent
of W(hh) is Wh, W(hx) is We, and W(S) is U. E converts word inputs
x(t) to word embeddings e(t). The final softmax over the vocabulary
shows us the probability of various options for token x(5), condi-
tioned on all previous tokens. The input could be much longer than
4-5 tokens.

2.1 RNN Loss and Perplexity

The loss function used in RNNs is often the cross entropy error in-
troduced in earlier notes. Equation 7 shows this function as the sum
over the entire vocabulary at time-step t.

J(t)(θ) = −
|V|

∑
j=1

yt,j × log(ŷt,j) (7)

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 5

The cross entropy error over a corpus of size T is:

J =
1
T

T

∑
t=1

J(t)(θ) = − 1
T

T

∑
t=1

|V|

∑
j=1

yt,j × log(ŷt,j) (8)

Equation 9 is called the perplexity relationship; it is basically 2 to
the power of the negative log probability of the cross entropy error
function shown in Equation 8. Perplexity is a measure of confusion
where lower values imply more confidence in predicting the next
word in the sequence (compared to the ground truth outcome).

Perplexity = 2J (9)

2.2 Advantages, Disadvantages and Applications of RNNs

RNNs have several advantages:

1. They can process input sequences of any length

2. The model size does not increase for longer input sequence
lengths

3. Computation for step t can (in theory) use information from many
steps back.

4. The same weights are applied to every timestep of the input, so
there is symmetry in how inputs are processed

However, they also have some disadvantages:

1. Computation is slow - because it is sequential, it cannot be paral-
lelized

2. In practice, it is difficult to access information from many steps
back due to problems like vanishing and exploding gradients,
which we discuss in the following subsection

The amount of memory required to run a layer of RNN is pro-
portional to the number of words in the corpus. We can consider a
sentence as a minibatch, and a sentence with k words would have k
word vectors to be stored in memory. Also, the RNN must maintain
two pairs of W, b matrices. As aforementioned, while the size of W
could be very large, it does not scale with the size of the corpus (un-
like the traditional language models). For a RNN with 1000 recurrent
layers, the matrix would be 1000× 1000 regardless of the corpus size.

RNNs can be used for many tasks, such as tagging (e.g. part-of-
speech, named entity recognition), sentence classification (e.g. senti-
ment classification), and encoder modules (e.g. questiton answering,

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 6

machine translation, and many other tasks). In the latter two applica-
tions, we want a representation for the sentence, which we can obtain
by taking the element-wise max or mean of all hidden states of the
timesteps in that sentence.

Note: Figure 6 is an alternative representation of RNNs used in
some publications. It represents the RNN hidden layer as a loop.

ht

Figure 6: The illustration of a RNN as a
loop over time-steps

2.3 Vanishing Gradient & Gradient Explosion Problems

Recurrent neural networks propagate weight matrices from one time-
step to the next. Recall the goal of a RNN implementation is to en-
able propagating context information through faraway time-steps.
For example, consider the following two sentences:

Sentence 1

"Jane walked into the room. John walked in too. Jane said hi to ___"

Sentence 2

"Jane walked into the room. John walked in too. It was late in the
day, and everyone was walking home after a long day at work. Jane

said hi to ___"

In both sentences, given their context, one can tell the answer to both
blank spots is most likely "John". It is important that the RNN predicts
the next word as "John", the second person who has appeared several
time-steps back in both contexts. Ideally, this should be possible given
what we know about RNNs so far. In practice, however, it turns out
RNNs are more likely to correctly predict the blank spot in Sentence
1 than in Sentence 2. This is because during the back-propagation
phase, the contribution of gradient values gradually vanishes as they
propagate to earlier timesteps, as we will show below. Thus, for long
sentences, the probability that "John" would be recognized as the next
word reduces with the size of the context. Below, we discuss the math-
ematical reasoning behind the vanishing gradient problem.

Consider Equations 5 and 6 at a time-step t; to compute the RNN
error, dE/dW, we sum the error at each time-step. That is, dEt/dW for
every time-step, t, is computed and accumulated.

∂E
∂W

=
T

∑
t=1

∂Et

∂W
(10)

The error for each time-step is computed through applying the
chain rule differentiation to Equations 6 and 5; Equation 11 shows
the corresponding differentiation. Notice dht/dhk refers to the partial

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 7

derivative of ht with respect to all previous k time-steps.

∂Et

∂W
=

t

∑
k=1

∂Et

∂yt

∂yt

∂ht

∂ht

∂hk

∂hk
∂W

(11)

Equation 12 shows the relationship to compute each dht/dhk; this
is simply a chain rule differentiation over all hidden layers within the
[k, t] time interval.

∂ht

∂hk
=

t

∏
j=k+1

∂hj

∂hj−1
=

t

∏
j=k+1

WT × diag[f ′(jj−1)] (12)

Because h ∈ RDn , each ∂hj/∂hj−1 is the Jacobian matrix for h:

∂hj

∂hj−1
= [

∂hj

∂hj−1,1
...

∂hj

∂hj−1,Dn

] =



∂hj,1

∂hj−1,1
. . .

∂hj,1

∂hj−1,Dn

. . .

. . .

. . .
∂hj,Dn

∂hj−1,1
. . .

∂hj,Dn

∂hj−1,Dn


(13)

Putting Equations 10, 11, 12 together, we have the following rela-
tionship.

∂E
∂W

=
T

∑
t=1

t

∑
k=1

∂Et

∂yt

∂yt

∂ht
(

t

∏
j=k+1

∂hj

∂hj−1
)

∂hk
∂W

(14)

Equation 15 shows the norm of the Jacobian matrix relationship
in Equation 13. Here, βW and βh represent the upper bound values
for the two matrix norms. The norm of the partial gradient at each
time-step, t, is therefore, calculated through the relationship shown in
Equation 15.

‖
∂hj

∂hj−1
‖≤‖WT ‖‖ diag[f ′(hj−1)] ‖≤ βW βh (15)

The norm of both matrices is calculated through taking their L2-
norm. The norm of f ′(hj−1) can only be as large as 1 given the sigmoid
non-linearity function.

‖ ∂ht

∂hk
‖=‖

t

∏
j=k+1

∂hj

∂hj−1
‖≤ (βW βh)

t−k (16)

The exponential term (βW βh)
t−k can easily become a very small or

large number when βW βh is much smaller or larger than 1 and t− k
is sufficiently large. Recall a large t − k evaluates the cross entropy
error due to faraway words. The contribution of faraway words to
predicting the next word at time-step t diminishes when the gradient
vanishes early on.

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 8

During experimentation, once the gradient value grows extremely
large, it causes an overflow (i.e. NaN) which is easily detectable at
runtime; this issue is called the Gradient Explosion Problem. When the
gradient value goes to zero, however, it can go undetected while dras-
tically reducing the learning quality of the model for far-away words
in the corpus; this issue is called the Vanishing Gradient Problem. Due to
vanishing gradients, we don’t know whether there is no dependency
between steps t and t + n in the data, or we just cannot capture the
true dependency due to this issue.

To gain practical intuition about the vanishing gradient problem,
you may visit the following example website.

2.4 Solution to the Exploding & Vanishing Gradients

Now that we gained intuition about the nature of the vanishing gradi-
ents problem and how it manifests itself in deep neural networks, let
us focus on a simple and practical heuristic to solve these problems.

To solve the problem of exploding gradients, Thomas Mikolov first
introduced a simple heuristic solution that clips gradients to a small
number whenever they explode. That is, whenever they reach a cer-
tain threshold, they are set back to a small number as shown in Algo-
rithm 1.

Algorithm 1: Pseudo-code for norm clip-
ping in the gradients whenever they ex-
plodeĝ← ∂E

∂W
if ‖ ĝ ‖≥ threshold then

ĝ← threshold
‖ ĝ ‖ ĝ

end if

Figure 7 visualizes the effect of gradient clipping. It shows the de-
cision surface of a small recurrent neural network with respect to its
W matrix and its bias terms, b. The model consists of a single unit
of recurrent neural network running through a small number of time-
steps; the solid arrows illustrate the training progress on each gradient
descent step. When the gradient descent model hits the high error wall
in the objective function, the gradient is pushed off to a far-away loca-
tion on the decision surface. The clipping model produces the dashed
line where it instead pulls back the error gradient to somewhere close
to the original gradient landscape.

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit
recurrent network, highlighting the existence of high cur-
vature walls. The solid lines depicts standard trajectories
that gradient descent might follow. Using dashed arrow
the diagram shows what would happen if the gradients is
rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
Wrec is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Figure 7: Gradient explosion clipping
visualization

To solve the problem of vanishing gradients, we introduce two tech-
niques. The first technique is that instead of initializing W(hh) ran-
domly, start off from an identity matrix initialization.

The second technique is to use the Rectified Linear Units (ReLU) in-
stead of the sigmoid function. The derivative for the ReLU is either 0 or

http://cs224d.stanford.edu/notebooks/vanishing_grad_example.html

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 9

1. This way, gradients would flow through the neurons whose deriva-
tive is 1 without getting attenuated while propagating back through
time-steps.

2.5 Deep Bidirectional RNNs

So far, we have focused on RNNs that condition on past words to
predict the next word in the sequence. It is possible to make predic-
tions based on future words by having the RNN model read through
the corpus backwards. Irsoy et al. shows a bi-directional deep neu-
ral network; at each time-step, t, this network maintains two hidden
layers, one for the left-to-right propagation and another for the right-
to-left propagation. To maintain two hidden layers at any time, this
network consumes twice as much memory space for its weight and
bias parameters. The final classification result, ŷt, is generated through
combining the score results produced by both RNN hidden layers. Fig-
ure 8 shows the bi-directional network architecture, and Equations 17

and 18 show the mathematical formulation behind setting up the bi-
directional RNN hidden layer. The only difference between these two
relationships is in the direction of recursing through the corpus. Equa-
tion 19 shows the classification relationship used for predicting the
next word via summarizing past and future word representations.

Bidirectionality

h
!
t = f (W

!"!
xt +V
!"
h
!
t−1 + b
!
)

h
!
t = f (W

!""
xt +V
!"
h
!
t+1 + b
!
)

yt = g(U[h
!
t;h
!
t]+ c)

y

h

x

 now represents (summarizes) the past and future
around a single token.
h = [h
!
;h
!
]Figure 8: A bi-directional RNN model

−→
h t = f (

−→
W xt +

−→
V
−→
h t−1 +

−→
b) (17)

←−
h t = f (

←−
W xt +

←−
V
←−
h t+1 +

←−
b) (18)

ŷt = g(Uht + c) = g(U[
−→
h t;
←−
h t] + c) (19)

RNNs can also be multi-layered. Figure 9 shows a multi-layer bi-
directional RNN where each lower layer feeds the next layer. As shown
in this figure, in this network architecture, at time-step t each interme-
diate neuron receives one set of parameters from the previous time-
step (in the same RNN layer), and two sets of parameters from the
previous RNN hidden layer; one input comes from the left-to-right
RNN and the other from the right-to-left RNN.

To construct a Deep RNN with L layers, the above relationships are
modified to the relationships in Equations 20 and 21 where the input
to each intermediate neuron at level i is the output of the RNN at
layer i− 1 at the same time-step, t. The output, ŷ, at each time-step is
the result of propagating input parameters through all hidden layers
(Equation 22).

Going Deep

h
! (i)
t = f (W

!"! (i)
ht
(i−1) +V

!" (i)
h
! (i)
t−1 + b
! (i)
)

h
! (i)
t = f (W

!"" (i)
ht
(i−1) +V

!" (i)
h
! (i)
t+1 + b
! (i)
)

yt = g(U[h
!
t
(L)
;h
!
t
(L)
]+ c)

y

h(3)

x
Each memory layer passes an intermediate sequential
representation to the next.

h(2)

h(1)

Figure 9: A deep bi-directional RNN
with three RNN layers.

−→
h (i)

t = f (
−→
W (i)h(i−1)

t +
−→
V (i)−→h (i)

t−1 +
−→
b (i)) (20)

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 10

←−
h (i)

t = f (
←−
W (i)h(i−1)

t +
←−
V (i)←−h (i)

t+1 +
←−
b (i)) (21)

ŷt = g(Uht + c) = g(U[
−→
h (L)

t ;
←−
h (L)

t] + c) (22)

2.6 Application: RNN Translation Model

Traditional translation models are quite complex; they consist of nu-
merous machine learning algorithms applied to different stages of the
language translation pipeline. In this section, we discuss the potential
for adopting RNNs as a replacement to traditional translation mod-
ules. Consider the RNN example model shown in Figure 10; here,
the German phrase Echt dicke Kiste is translated to Awesome sauce. The
first three hidden layer time-steps encode the German language words
into some language word features (h3). The last two time-steps decode
h3 into English word outputs. Equation 23 shows the relationship for
the Encoder stage and Equations 24 and 25 show the equation for the
Decoder stage.

x1 x2 x3

h1 h2 h3

W	
 W	

y1 y2

Awesome	
 	
 	
 	
 	
 	
 	
 	

sauce	

Figure 10: A RNN-based translation
model. The first three RNN hidden
layers belong to the source language
model encoder, and the last two belong
to the destination language model
decoder.

ht = φ(ht−1, xt) = f (W(hh)ht−1 + W(hx)xt) (23)

ht = φ(ht−1) = f (W(hh)ht−1) (24)

yt = so f tmax(W(S)ht) (25)

One may naively assume this RNN model along with the cross-
entropy function shown in Equation 26 can produce high-accuracy
translation results. In practice, however, several extensions are to be
added to the model to improve its translation accuracy performance.

max
θ

1
N

N

∑
n=1

log pθ(y(n)|x(n)) (26)

Extension I: train different RNN weights for encoding and decoding.
This decouples the two units and allows for more accuracy prediction
of each of the two RNN modules. This means the φ() functions in
Equations 23 and 24 would have different W(hh) matrices.

Figure 11: Language model with
three inputs to each decoder neuron:
(ht−1, c, yt−1)

Extension II: compute every hidden state in the decoder using three
different inputs:

• The previous hidden state (standard)

• Last hidden layer of the encoder (c = hT in Figure 11)

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 11

• Previous predicted output word, ŷt−1

Combining the above three inputs transforms the φ function in the
decoder function of Equation 24 to the one in Equation 27. Figure 11

illustrates this model.

ht = φ(ht−1, c, yt−1) (27)

Extension III: train deep recurrent neural networks using multiple
RNN layers as discussed earlier in this chapter. Deeper layers often
improve prediction accuracy due to their higher learning capacity. Of
course, this implies a large training corpus must be used to train the
model.

Extension IV: train bi-directional encoders to improve accuracy simi-
lar to what was discussed earlier in this chapter.

Extension V: given a word sequence A B C in German whose transla-
tion is X Y in English, instead of training the RNN using A B C → X
Y, train it using C B A → X Y. The intutition behind this technique is
that A is more likely to be translated to X. Thus, given the vanishing
gradient problem discussed earlier, reversing the order of the input
words can help reduce the error rate in generating the output phrase.

3 Gated Recurrent Units

Beyond the extensions discussed so far, RNNs have been found to per-
form better with the use of more complex units for activation. So far,
we have discussed methods that transition from hidden state ht−1 to
ht using an affine transformation and a point-wise nonlinearity. Here,
we discuss the use of a gated activation function thereby modifying
the RNN architecture. What motivates this? Well, although RNNs
can theoretically capture long-term dependencies, they are very hard
to actually train to do this. Gated recurrent units are designed in a
manner to have more persistent memory thereby making it easier for
RNNs to capture long-term dependencies. Let us see mathematically
how a GRU uses ht−1 and xt to generate the next hidden state ht. We
will then dive into the intuition of this architecture.

zt = σ(W(z)xt + U(z)ht−1) (Update gate)

rt = σ(W(r)xt + U(r)ht−1) (Reset gate)

h̃t = tanh(rt ◦Uht−1 + Wxt) (New memory)

ht = (1− zt) ◦ h̃t + zt ◦ ht−1 (Hidden state)

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 12

The above equations can be thought of a GRU’s four fundamental op-
erational stages and they have intuitive interpretations that make this
model much more intellectually satisfying (see Figure 12):

1. New memory generation: A new memory h̃t is the consolidation of
a new input word xt with the past hidden state ht−1. Anthropomor-
phically, this stage is the one who knows the recipe of combining a
newly observed word with the past hidden state ht−1 to summarize
this new word in light of the contextual past as the vector h̃t.

2. Reset Gate: The reset signal rt is responsible for determining how
important ht−1 is to the summarization h̃t. The reset gate has the
ability to completely diminish past hidden state if it finds that ht−1

is irrelevant to the computation of the new memory.

3. Update Gate: The update signal zt is responsible for determining
how much of ht−1 should be carried forward to the next state. For
instance, if zt ≈ 1, then ht−1 is almost entirely copied out to ht.
Conversely, if zt ≈ 0, then mostly the new memory h̃t is forwarded
to the next hidden state.

4. Hidden state: The hidden state ht is finally generated using the
past hidden input ht−1 and the new memory generated h̃t with the
advice of the update gate.

Figure 12: The detailed internals of a
GRUIt is important to note that to train a GRU, we need to learn all

the different parameters: W, U, W(r), U(r), W(z), U(z). These follow the
same backpropagation procedure we have seen in the past.

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 13

4 Long-Short-Term-Memories

Long-Short-Term-Memories are another type of complex activation unit
that differ a little from GRUs. The motivation for using these is similar
to those for GRUs however the architecture of such units does differ.
Let us first take a look at the mathematical formulation of LSTM units
before diving into the intuition behind this design:

it = σ(W(i)xt + U(i)ht−1) (Input gate)

ft = σ(W(f)xt + U(f)ht−1) (Forget gate)

ot = σ(W(o)xt + U(o)ht−1) (Output/Exposure gate)

c̃t = tanh(W(c)xt + U(c)ht−1) (New memory cell)

ct = ft ◦ ct−1 + it ◦ c̃t (Final memory cell)

ht = ot ◦ tanh(ct)

Figure 13: The detailed internals of a
LSTM

cs224n: natural language processing with deep learning lecture notes: part v

language models, rnn, gru and lstm 14

We can gain intuition of the structure of an LSTM by thinking of its
architecture as the following stages:

1. New memory generation: This stage is analogous to the new mem-
ory generation stage we saw in GRUs. We essentially use the input
word xt and the past hidden state ht−1 to generate a new memory
c̃t which includes aspects of the new word x(t).

2. Input Gate: We see that the new memory generation stage doesn’t
check if the new word is even important before generating the new
memory – this is exactly the input gate’s function. The input gate
uses the input word and the past hidden state to determine whether
or not the input is worth preserving and thus is used to gate the new
memory. It thus produces it as an indicator of this information.

3. Forget Gate: This gate is similar to the input gate except that it
does not make a determination of usefulness of the input word –
instead it makes an assessment on whether the past memory cell is
useful for the computation of the current memory cell. Thus, the
forget gate looks at the input word and the past hidden state and
produces ft.

4. Final memory generation: This stage first takes the advice of the
forget gate ft and accordingly forgets the past memory ct−1. Sim-
ilarly, it takes the advice of the input gate it and accordingly gates
the new memory c̃t. It then sums these two results to produce the
final memory ct.

5. Output/Exposure Gate: This is a gate that does not explicitly exist
in GRUs. It’s purpose is to separate the final memory from the
hidden state. The final memory ct contains a lot of information that
is not necessarily required to be saved in the hidden state. Hidden
states are used in every single gate of an LSTM and thus, this gate
makes the assessment regarding what parts of the memory ct needs
to be exposed/present in the hidden state ht. The signal it produces
to indicate this is ot and this is used to gate the point-wise tanh of
the memory.

	Language Models
	Recurrent Neural Networks (RNN)
	Gated Recurrent Units
	Long-Short-Term-Memories

