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This set of notes introduces single and multilayer neural networks,
and how they can be used for classification purposes. We then dis-
cuss how they can be trained using a distributed gradient descent
technique known as backpropagation. We will see how the chain
rule can be used to make parameter updates sequentially. After a
rigorous mathematical discussion of neural networks, we will discuss
some practical tips and tricks in training neural networks involving:
neuron units (non-linearities), gradient checks, Xavier parameter ini-
tialization, learning rates, Adagrad, etc. Lastly, we will motivate the
use of recurrent neural networks as a language model.

1 Neural Networks: Foundations

We established in our previous discussions the need for non-linear
classifiers since most data are not linearly separable and thus, our
classification performance on them is limited. Neural networks are
a family of classifiers with non-linear decision boundary as seen in
Figure 1. Now that we know the sort of decision boundaries neural
networks create, let us see how they manage doing so.

1.1 A Neuron

A neuron is a generic computational unit that takes n inputs and
produces a single output. What differentiates the outputs of different
neurons is their parameters (also referred to as their weights). One of
the most popular choices for neurons is the "sigmoid" or "binary lo-
gistic regression” unit. This unit takes an n-dimensional input vector
x and produces the scalar activation (output) a. This neuron is also
associated with an n-dimensional weight vector, w, and a bias scalar,
b. The output of this neuron is then:

1
T Tt exp(—(WTx 1))

We can also combine the weights and bias term above to equiva-
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Figure 1: We see here how a non-linear
decision boundary separates the data
very well. This is the prowess of neural
networks.

Fun Fact:

Neural networks are biologically in-
spired classifiers which is why they are
often called "artificial neural networks"
to distinguish them from the organic
kind. However, in reality human neural
networks are so much more capable
and complex from artificial neural net-
works that it is usually better to not
draw too many parallels between the
two.

Neuron:

A neuron is the fundamental building
block of neural networks. We will
see that a neuron can be one of many
functions that allows for non-linearities
to accrue in the network.
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lently formulate:

1
ST T v exp(—[w! 0] -[x 1))

This formulation can be visualized in the manner shown in Fig-

ure 2.

1.2 A Single Layer of Neurons

We extend the idea above to multiple neurons by considering the
case where the input x is fed as an input to multiple such neurons as
shown in Figure 3.

If we refer to the different neurons’ weights as {w!), - ,w(™}
and the biases as {by, - - - , by }, we can say the respective activations

are {ay, -+ ,an}:

1
a1 =
T + exp(wWTx + by)
1
a

"1y exp(w™Tx + by,)

Let us define the following abstractions to keep the notation simple
and useful for more complex networks:

r 1

1+exp(z1)
o(z) = :
1
L1-+exp(zm)
_bl
b=|:]eR"
_bm
T
W = e (= Rmxn
_ w7

We can now write the output of scaling and biases as:

z=Wx+b
The activations of the sigmoid function can then be written as:
al)

=0(z) =c(Wx +b)

g(m)

Wy,
T 1

Figure 2: This image captures how in
a sigmoid neuron, the input vector x is
first scaled, summed, added to a bias
unit, and then passed to the squashing
sigmoid function.

A\ A
Figure 3: This image captures how
multiple sigmoid units are stacked on
the right, all of which receive the same
input x.
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So what do these activations really tell us? Well, one can think
of these activations as indicators of the presence of some weighted
combination of features. We can then use a combination of these
activations to perform classification tasks.

1.3 Feed-forward Computation

So far we have seen how an input vector x € R" can be fed to a
layer of sigmoid units to create activations a2 € R™. But what is the
intuition behind doing so? Let us consider the following named-
entity recognition (NER) problem in NLP as an example:

"Museums in Paris are amazing”

Here, we want to classify whether or not the center word "Paris” is
a named-entity. In such cases, it is very likely that we would not just
want to capture the presence of words in the window of word vectors
but some other interactions between the words in order to make the
classification. For instance, maybe it should matter that “"Museums”
is the first word only if “in” is the second word. Such non-linear de-
cisions can often not be captured by inputs fed directly to a Softmax
function but instead require the scoring of the intermediate layer
discussed in Section 1.2. We can thus use another matrix U € R"*!
to generate an unnormalized score for a classification task from the
activations:

s=Ula=U"f(Wx+D)

where f is the activation function.

Analysis of Dimensions: If we represent each word using a 4-
dimensional word vector and we use a 5-word window as input (as
in the above example), then the input x € R?. If we use 8 sigmoid
units in the hidden layer and generate 1 score output from the activa-
tions, then W € R8>0 p ¢ R®, U € R®*1, s € R.

1.4 Maximum Margin Objective Function

Like most machine learning models, neural networks also need an
optimization objective, a measure of error or goodness which we
want to minimize or maximize respectively. Here, we will discuss a
popular error metric known as the maximum margin objective. The
idea behind using this objective is to ensure that the score computed
for "true" labeled data points is higher than the score computed for
"false" labeled data points.

Using the previous example, if we call the score computed for the
"true" labeled window "Museums in Paris are amazing” as s and the

Dimensions for a single hidden layer
neural network: If we represent each
word using a 4-dimensional word
vector and we use a 5-word window
as input, then the input x € R?. If we
use 8 sigmoid units in the hidden layer
and generate 1 score output from the
activations, then W € R®*20 b ¢ RS,
U € R¥1, s € R. The stage-wise
feed-forward computation is then:

z=Wx+b
a=o(z)
s=UTa

Figure 4: This image captures how a
simple feed-forward network might
compute its output.
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score computed for the "false" labeled window “Not all museums in
Paris” as s; (subscripted as ¢ to signify that the window is "corrupt”).

Then, our objective function would be to maximize (s — s.) or to
minimize (s. — s). However, we modify our objective to ensure that
error is only computed if s. > s = (s, —s) > 0. The intuition
behind doing this is that we only care the the "true" data point have
a higher score than the "false" data point and that the rest does not
matter. Thus, we want our error to be (s, — s) if s, > s else 0. Thus,
our optimization objective is now:

minimize ] = max(s; —s,0)

However, the above optimization objective is risky in the sense that
it does not attempt to create a margin of safety. We would want the
"true” labeled data point to score higher than the "false" labeled data
point by some positive margin A. In other words, we would want
error to be calculated if (s — s, < A) and not just when (s — s, < 0).
Thus, we modify the optimization objective:

minimize ] = max(A +s; —s,0)

We can scale this margin such that itis A = 1 and let the other
parameters in the optimization problem adapt to this without any
change in performance. For more information on this, read about
functional and geometric margins - a topic often covered in the study

of Support Vector Machines. Finally, we define the following opti- The max-margin objective function
is most commonly associated with

mization objective which we optimize over all training windows: i
Support Vector Machines (SVMs)

minimize ] = max(1+ s, —s,0)

In the above formulation s, = U f(Wx, +b) and s = U f(Wx +b).

1.5 Training with Backpropagation — Elemental

In this section we discuss how we train the different parameters in
the model when the cost | discussed in Section 1.4 is positive. No
parameter updates are necessary if the cost is 0. Since we typically
update parameters using gradient descent (or a variant such as SGD),
we typically need the gradient information for any parameter as
required in the update equation:

0D =01 —av, ]

Backpropagation is technique that allows us to use the chain rule
of differentiation to calculate loss gradients for any parameter used
in the feed-forward computation on the model. To understand this
further, let us understand the toy network shown in Figure 5 for
which we will perform backpropagation.

Figure 5: This is a 4-2-1 neural network
where neuron j on layer k receives input
(k) (k)

z and produces activation output a e
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Here, we use a neural network with a single hidden layer and a
single unit output. Let us establish some notation that will make it
easier to generalize this model later:

® x; is an input to the neural network.
* s is the output of the neural network.

* Each layer (including the input and output layers) has neurons
which receive an input and produce an output. The j-th neuron

of layer k receives the scalar input z](.k)
(k)
i

and produces the scalar

activation output a

¢ We will call the backpropagated error calculated at z](k) as (5](’().

® Layer 1 refers to the input layer and not the first hidden layer. For
the input layer, x; = z](-l) = a](-l).

o W) is the transfer matrix that maps the output from the k-th layer

to the input to the (k + 1)-th Thus, W) = W and W®? = U to put
this new generalized notation in perspective of Section 1.3.

Let us begin: Suppose the cost | = (1 + s — s) is positive and

we want to perform the update of parameter Wl(i) (in Figure 5 and

(1) (2)

Figure 6), we must realize that Wli only contributes to z;

thus agz)

and

. This fact is crucial to understanding backpropagation —
backpropagated gradients are only affected by values they contribute
(2)

to. a,”’ is consequently used in the forward computation of score by

multiplication with Wl(z). We can see from the max-margin loss that:

9 9] _

3 s

Therefore we will work with % here for simplicity. Thus,
ij
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Backpropagation Notation:

x; is an input to the neural network.

s is the output of the neural net-
work.

The j-th neuron of layer k receives
(k)
J
the scalar activation output a
(1)

For the input layer, x; = z; = a](.l).

the scalar input z;"' and produces

)
®

W is the transfer matrix that maps
the output from the k-th layer to

the input to the (k + 1)-th. Thus,
WO = Wand W® = UT using
notation from Section 1.3.
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i Y
0 i(z) is essentially the error propagating backwards from the i-th neu-

ron in layer 2. a](-l) is an input fed to i-th neuron in layer 2 when

scaled by Wj;.
Let us discuss the "error sharing/distribution" interpretation of

We see above that the gradient reduces to the product ¢ where

backpropagation better using Figure 6 as an example. Say we were to
update Wl(i):

1. We start with the an error signal of 1 propagating backwards from
o,
2. We then multiply this error by the local gradient of the neuron

which maps Z?) to a?). This happens to be 1 in this case and thus,

the error is still 1. This is now known as (51(3) =1.

3. At this point, the error signal of 1 has reached 253). We now need

to distribute the error signal so that the "fair share" of the error
reaches to agz).

4. This amount is the (error signal at z§3) = 5§3>)>< Wl(z) = Wl(z). Thus,
the error at agz) = Wl(z).

5. As we did in step 2, we need to move the error across the neuron
which maps zgz) to 1152). We do this by multiplying the error signal

at agz) by the local gradient of the neuron which happens to be

f(&”).
6. Thus, the error signal at zgz) is f’ (zgz))Wl(Z). This is known as (5%2).

7. Finally, we need to distribute the "fair share" of the error to Wl(i)
by simply multiplying it by the input it was responsible for for-

warding, which happens to be 114(11).

8. Thus, the gradient of the loss with respect to Wl(i) is calculated to

be ag)f’(z?))wl(z).

el W)

6

Figure 6: This subnetwork shows the
relevant parts of the network required

to update Wi(jl)
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Notice that the result we arrive at using this approach is exactly
the same as that we arrived at using explicit differentiation earlier.
Thus, we can calculate error gradients with respect to a parameter
in the network using either the chain rule of differentiation or using
an error sharing and distributed flow approach — both of these ap-
proaches happen to do the exact same thing but it might be helpful
to think about them one way or another.

Bias Updates: Bias terms (such as b%l)) are mathematically equivalent

to other weights contributing to the neuron input (zgz)) as long as the
input being forwarded is 1. As such, the bias gradients for neuron

)

i on layer k is simply (51.(1( . For instance, if we were updating bgl)

instead of Wl(? above, the gradient would simply be f’ (zgz))Wl(z).
— 5j(k 1) — 6,
Z'(k ) a.(k 1) zi(k) az(k)
Generalized steps to propagate 6(X) to 5(k—1); . O : Wij( 1) O_'
1. We have error (5i(k) propagating backwards from zl(k), i.e. neuron i F(llgulr)e 7: Propagating error from () to
at layer k. See Figure 7. 0
2. We propagate this error backwards to a](-kfl) by multiplying 51-(]() by
the path weight Wi(jkfl).
3. Thus, the error received at a](-kfl) is 51-(k) Wl-(jkfl).
4. However, gk v may have been forwarded to multiple nodes in
the next layer as shown in Figure 8. It should receive responsibility
for errors propagating backward from node m in layer k too, using
the exact same mechanism.
5. Thus, error received at a](.kfl) is 5;” Wl.(].kfl) + (S,(,If ) W,ik]fl).
6. In fact, we can generalize this to be } ; 5§k) Wi(jkfl).
7. Now that we have the correct error at a](‘kfl), we move it across
neuron j at layer k — 1 by multiplying with with the local gradient
k-1
Cit =5k 8
B _ k-1 k-1 k k
8. Thus, the error that reaches z](.k l), called (5](]( Dis Zj( H\ ai( ) Zi( )Ojaz‘( )
k—1 k) 14 (k—1 W..(k-1)
f’(Z]( ) gia! )Wi(]' : K
Wmi(kil) an(k)
2 k)
—5,%

Figure 8: Propagating error from 6) to
5k=1)
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1.6  Training with Backpropagation — Vectorized

So far, we discussed how to calculate gradients for a given parameter
in the model. Here we will generalize the approach above so that
we update weight matrices and bias vectors all at once. Note that
these are simply extensions of the above model that will help build
intuition for the way error propagation can be done at a matrix-
vector level.

For a given parameter Wl.(jk) , we identified that the error gradient is

simply (Si(kﬂ) . a](-k). As a reminder, W) is the matrix that maps a*)
to z(F+1). We can thus establish that the error gradient for the entire
matrix W) is:

s g glert) (0

Vit = |85 Va5 gl | = sk 07

Thus, we can write an entire matrix gradient using the outer prod-
uct of the error vector propagating into the matrix and the activations
forwarded by the matrix.

Now, we will see how we can calculate the error vector k), We
established earlier using Figure 8 that 5}k) = f (z](k)) Y 5l(k+1)W4(k ),

ij
This can easily generalize to matrices such that:

s — f/(z(k)) o (W(k)T(;(kJrl))

In the above formulation, the o operator corresponds to an element
wise product between elements of vectors (o : RN x RN — RN).

Computational efficiency: Having explored element-wise updates
as well as vector-wise updates, we must realize that the vectorized
implementations run substantially faster in scientific computing
environments such as MATLAB or Python (using NumPy/SciPy
packages). Thus, we should use vectorized implementation in prac-
tice. Furthermore, we should also reduce redundant calculations

in backpropagation - for instance, notice that §¢) depends directly

k+1), Thus, we should ensure that when we update W) using

on 4
6(k+1) we save 6(+1) to later derive 6) — and we then repeat this for
(k—1)...(1). Such a recursive procedure is what makes backpropa-

gation a computationally affordable procedure.

2 Neural Networks: Tips and Tricks

Having discussed the mathematical foundations of neural networks,
we will now dive into some tips and tricks commonly employed

Error propagates from layer (k + 1) to
(k) in the following manner:

st — f’(z(k)) o (WRTsk+1))

Of course, this assumes that in the
forward propagation the signal z(*) first
goes through activation neurons f to
generate activations a(*) and are then
linearly combined to yield z**1) via
transfer matrix W),
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when using neural networks in practice.

2.1 Gradient Check

In the last section, we discussed in detail how to calculate error
gradients/updates for parameters in a neural network model via
calculus-based (analytic) methods. Here we now introduce a tech-
nique of numerically approximating these gradients — though too
computationally inefficient to be used directly for training the net-
works, this method will allow us to very precisely estimate the
derivative with respect to any parameter; it can thus serve as a useful
sanity check on the correctness of our analytic derivatives. Given a
model with parameter vector 6 and loss function ], the numerical
gradient around 0; is simply given by centered difference formula:

(i+)y — 1(gli—)
oy = L0 I

where € is a small number (usually around 1e~?). The term ](9(i+))

is simply the error calculated on a forward pass for a given input
when we perturb the parameter 8’s i*" element by +e€. Similarly, the
term J(0("-)) is the error calculated on a forward pass for the same
input when we perturb the parameter 8’s i’ element by —e. Thus,
using two forward passes, we can approximate the gradient with
respect to any given parameter element in the model. We note that
this definition of the numerical gradient follows very naturally from
the definition of the derivative, where, in the scalar case,

i = F =)

Of course, there is a slight difference — the definition above only
perturbs x in the positive direction to compute the gradient. While it
would have been perfectly acceptable to define the numerical gradi-
ent in this way, in practice it is often more precise and stable to use
the centered difference formula, where we perturb a parameter in
both directions. The intuition is that to get a better approximation of
the derivative/slope around a point, we need to examine the func-
tion f’s behavior both to the left and right of that point. It can also be
shown using Taylor’s theorem that the centered difference formula
has an error proportional to €2, which is quite small, whereas the
derivative definition is more error-prone.

Now, a natural question you might ask is, if this method is so pre-
cise, why do we not use it to compute all of our network gradients
instead of applying back-propagation? The simple answer, as hinted
earlier, is inefficiency — recall that every time we want to compute the
gradient with respect to an element, we need to make two forward

Gradient checks are a great way to
compare analytical and numerical
gradients. Analytical gradients should
be close and numerical gradients can be
calculated using:

J(60*)) and J(8U~)) can be evalu-
ated using two forward passes. An
implementation of this can be seen in
Snippet 2.1.
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passes through the network, which will be computationally expen-
sive. Furthermore, many large-scale neural networks can contain
millions of parameters, and computing two passes per parameter is
clearly not optimal. And, since in optimization techniques such as
SGD, we must compute the gradients once per iteration for several
thousands of iterations, it is obvious that this method quickly grows
intractable. This inefficiency is why we only use gradient check to
verify the correctness of our analytic gradients, which are much

quicker to compute. A standard implementation of gradient check is
shown below:

10
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2.2 Regularization

As with many machine learning models, neural networks are highly
prone to overfitting, where a model is able to obtain near perfect per-
formance on the training dataset, but loses the ability to generalize
to unseen data. A common technique used to address overfitting (an
issue also known as the “high-variance problem”) is the incorpora-
tion of an L, regularization penalty. The idea is that we will simply
append an extra term to our loss function J, so that the overall cost is
now calculated as:

L
k=] +A L [w

F
The Frobenius Norm of a matrix U is
In the above formulation, ||[W() . is the Frobenius norm of the defined as follows:
matrix W (the i-th weight matrix in the network) and A is the ullp = 323 Ui
i

hyper-parameter controlling how much weight the regularization
term has relative to the original cost function. Since we are trying

to minimize Jgr, what regularization is essentially doing is penaliz-
ing weights for being too large while optimizing over the original
cost function. Due to the quadratic nature of the Frobenius norm
(which computes the sum of the squared elements of a matrix), Lp-
regularization effectively reduces the flexibility of the model and
thereby reduces the overfitting phenomenon. Imposing such a con-
straint can also be interpreted as the prior Bayesian belief that the
optimal weights are close to zero — how close depends on the value
of A. Choosing the right value of A is critical, and must be chosen
via hyperparameter-tuning. Too high a value of A causes most of
the weights to be set too close to 0, and the model does not learn
anything meaningful from the training data, often obtaining poor ac-
curacy on training, validation, and testing sets. Too low a value, and
we fall into the domain of overfitting once again. It must be noted
that the bias terms are not regularized and do not contribute to the
cost term above — try thinking about why this is the case!

There are indeed other types of regularization that are sometimes
used, such as L regularization, which sums over the absolute values
(rather than squares) of parameter elements — however, this is less
commonly applied in practice since it leads to sparsity of parameter
weights. In the next section, we discuss dropout, which effectively acts
as another form of regularization by randomly dropping (i.e. setting
to zero) neurons in the forward pass.
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2.3 Dropout

Dropout is a powerful technique for regularization, first introduced
by Srivastava et al. in Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. The idea is simple yet effective — during train-
ing, we will randomly “drop” with some probability (1 — p) a subset
of neurons during each forward/backward pass (or equivalently,

we will keep alive each neuron with a probability p). Then, during
testing, we will use the full network to compute our predictions. The
result is that the network typically learns more meaningful informa-
tion from the data, is less likely to overfit, and usually obtains higher
performance overall on the task at hand. One intuitive reason why
this technique should be so effective is that what dropout is doing is
essentially doing is training exponentially many smaller networks at
once and averaging over their predictions.

In practice, the way we introduce dropout is that we take the out-
put /1 of each layer of neurons, and keep each neuron with prob-
ability p, and else set it to 0. Then, during back-propagation, we
only pass gradients through neurons that were kept alive during
the forward pass. Finally, during testing, we compute the forward
pass using all of the neurons in the network. However, a key sub-
tlety is that in order for dropout to work effectively, the expected
output of a neuron during testing should be approximately the same
as it was during training — else the magnitude of the outputs could
be radically different, and the behavior of the network is no longer
well-defined. Thus, we must typically divide the outputs of each
neuron during testing by a certain value - it is left as an exercise to
the reader to determine what this value should be in order for the
expected outputs during training and testing to be equivalent.

2.4 Neuron Units

So far we have discussed neural networks that contain sigmoidal
neurons to introduce nonlinearities; however in many applications
better networks can be designed using other activation functions.
Some common choices are listed here with their function and gra-
dient definitions and these can be substituted with the sigmoidal
functions discussed above.

Sigmoid: This is the default choice we have discussed; the activation
function ¢ is given by:

1

T e o)

a) Standard Neural Net

Dropout applied to an artificial neural
network. Image credits to Srivastava et
al.

Figure 9: The response of a sigmoid
nonlinearity
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where o(z) € (0,1)

The gradient of o(z) is:

7E) = [ = o)1~ a(z)

Tanh: The tanh function is an alternative to the sigmoid function
that is often found to converge faster in practice. The primary differ-

ence between tanh and sigmoid is that tanh output ranges from —1 to

1 while the sigmoid ranges from 0 to 1.

_exp(z) —exp(—z)
tanh(z) = oxp(z) Foxp(—2) 20(2z) —1

where tanh(z) € (—1,1)

The gradient of tanh(z) is:

rin exp(z) — exp(—z) 2 .
tanh'(z) =1 — (exp(z) " exp(z)> =1 — tanh?(2)

Hard tanh: The hard tanh function is sometimes preferred over the
tanh function since it is computationally cheaper. It does however
saturate for magnitudes of z greater than 1. The activation of the
hard tanh is:

-1 z< -1
hardtanh(z) = z —-1<z<1
1 :z>1

The derivative can also be expressed in a piecewise functional form:

1 :-1<z<1
0 : otherwise

hardtanh’(z) = {

Soft sign: The soft sign function is another nonlinearity which can
be considered an alternative to tanh since it too does not saturate as
easily as hard clipped functions:

softsign(z) = 1 +Z|Z|
The derivative is the expressed as:
softsign’(z) = m

Figure 10: The response of a tanh
nonlinearity

Figure 11: The response of a hard tanh
nonlinearity

Figure 12: The response of a soft sign
nonlinearity

where sgn is the signum function which returns +1 depending on the sign of z
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ReLU: The ReLU (Rectified Linear Unit) function is a popular choice
of activation since it does not saturate even for larger values of z and ‘

has found much success in computer vision applications: o

rect(z) = max(z,0) )

The derivative is then the piecewise function: Figure 13: The response of a ReLU

0 : otherwise

nonlinearity
1 :2>0
rect'(z) = {

Leaky ReLU: Traditional ReLU units by design do not propagate
any error for non-positive z — the leaky ReLU modifies this such

that a small error is allowed to propagate backwards even when z is
negative: ol

leaky(z) = max(z, k- z) .

where 0 < k < 1 Figure 14: The response of a leaky

. e e ReLU nonlinearity
This way, the derivative is representable as:

1 :z>0

leaky’(z) = { '

: otherwise

2.5 Data Preprocessing

As is the case with machine learning models generally, a key step
to ensuring that your model obtains reasonable performance on the
task at hand is to perform basic preprocessing on your data. Some
common techniques are outlined below.

Mean Subtraction

Given a set of input data X, it is customary to zero-center the data by
subtracting the mean feature vector of X from X. An important point
is that in practice, the mean is calculated only across the training set,
and this mean is subtracted from the training, validation, and testing
sets.

Normalization

Another frequently used technique (though perhaps less so than
mean subtraction) is to scale every input feature dimension to have
similar ranges of magnitudes. This is useful since input features are
often measured in different “units”, but we often want to initially
consider all features as equally important. The way we accomplish
this is by simply dividing the features by their respective standard
deviation calculated across the training set.
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Whitening

Not as commonly used as mean-subtraction + normalization, whiten-
ing essentially converts the data to a have an identity covariance
matrix — that is, features become uncorrelated and have a variance

of 1. This is done by first mean-subtracting the data, as usual, to get
X'. We can then take the Singular Value Decomposition (SVD) of X’
to get matrices U, S, V. We then compute UX' to project X’ into the
basis defined by the columns of U. We finally divide each dimension
of the result by the corresponding singular value in S to scale our
data appropriately (if a singular value is zero, we can just divide by a
small number instead).

2.6 Parameter Initialization

A key step towards achieving superlative performance with a neu-
ral network is initializing the parameters in a reasonable way. A
good starting strategy is to initialize the weights to small random
numbers normally distributed around 0 — and in practice, this often
words acceptably well. However, in UNDERSTANDING THE DIF-
FICULTY OF TRAINING DEEP FEEDFORWARD NEURAL NETWORKS
(2010), XAVIER ET AL study the effect of different weight and bias
initialization schemes on training dynamics. The empirical findings
suggest that for sigmoid and tanh activation units, faster convergence
and lower error rates are achieved when the weights of a matrix

W e =D xn®

as follows:

are initialized randomly with a uniform distribution

6 6
Wl { - \/n(l) +n(+1)’ \/n(l) n n(l+1)}

Where n(!) is the number of input units to W (fan-in) and n'

I+1)

is the number of output units from W (fan-out). In this parameter
initialization scheme, bias units are initialized to 0. This approach
attempts to maintain activation variances as well as backpropagated
gradient variances across layers. Without such initialization, the
gradient variances (which are a proxy for information) generally
decrease with backpropagation across layers.

2.7 Learning Strategies

The rate/magnitude of model parameter updates during training can
be controlled using the learning rate. In the following naive Gradient
Descent formulation, « is the learning rate:

gnew — 901d _ DCVQI,}(G)
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You might think that for fast convergence rates, we should set «
to larger values — however faster convergence is not guaranteed with
larger convergence rates. In fact, with very large learning rates, we
might experience that the loss function actually diverges because the
parameters update causes the model to overshoot the convex minima
as shown in Figure 15. In non-convex models (most of those we work
with), the outcome of a large learning rate is unpredictable, but the
chances of diverging loss functions are very high.

The simple solution to avoiding a diverging loss is to use a very
small learning rate so that we carefully scan the parameter space —
of course, if we use too small a learning rate, we might not converge
in a reasonable amount of time, or might get caught in local minima.
Thus, as with any other hyperparameter, the learning rate must be
tuned effectively.

Since training is the most expensive phase in a deep learning
system, some research has attempted to improve this naive approach
to setting learning learning rates. For instance, RONAN COLLOBERT
scales the learning rate of a weight W;; (where W € R X”(1)) by
the inverse square root of the fan-in of the neuron (n").

There are several other techniques that have proven to be effec-
tive as well — one such method is annealing, where, after several
iterations, the learning rate is reduced in some way — this method
ensures that we start off with a high learning rate and approach a
minimum quickly; as we get closer to the minimum, we start lower-
ing our learning rate so that we can find the optimum under a more
fine-grained scope. A common way to perform annealing is to reduce
the learning rate a by a factor x after every n iterations of learning.
Exponential decay is also common, where, the learning rate « at iter-
ation ¢ is given by a(t) = age ¥, where aq is the initial learning rate,
and k is a hyperparameter. Another approach is to allow the learning
rate to decrease over time such that:

aoT
a(t) = max(t, T)

In the above scheme, g is a tunable parameter and represents the
starting learning rate. 7 is also a tunable parameter and represents
the time at which the learning rate should start reducing. In practice,
this method has been found to work quite well. In the next section
we discuss another method for adaptive gradient descent which does

not require hand-set learning rates.

2.8 Momentum Updates

Momentum methods, a variant of gradient descent inspired by the
study of dynamics and motion in physics, attempt to use the “veloc-

ith Tuo Input Ueights

()
: " \0"
Ntk
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Nty

Figure 15: Here we see that updating
parameter w, with a large learning rate
can lead to divergence of the error.
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ity” of updates as a more effective update scheme. Pseudocode for
momentum updates is shown below:

Snippet 2.2

# Computes a standard momentum update
# on parameters x

v = muxv - alphaxgrad_x

X +=V

2.9 Adaptive Optimization Methods

AdaGrad is an implementation of standard stochastic gradient de-
scent (SGD) with one key difference: the learning rate can vary for
each parameter. The learning rate for each parameter depends on
the history of gradient updates of that parameter in a way such that
parameters with a scarce history of updates are updated faster using
a larger learning rate. In other words, parameters that have not been
updated much in the past are likelier to have higher learning rates
now. Formally:

[44

d
\/ﬁgt’i where gt,i = 87911‘]1}(9)
=187,

In this technique, we see that if the RMS of the history of gradients

Or; =01, —

is extremely low, the learning rate is very high. A simple implemen-
tation of this technique is:

Snippet 2.3

# Assume the gradient dx and parameter vector x
cache += dxx*x2

X += - learning_rate x dx / np.sqrt(cache + 1le-8)

Other common adaptive methods are RMSProp and Adam, whose
update rules are shown below (courtesy of Andrej Karpathy):

Snippet 2.4

# Update rule for RMS prop

cache = decay_rate * cache + (1 - decay_rate) * dx**2
X += - learning_rate * dx / (np.sqrt(cache) + eps)

Snippet 2.5
# Update rule for Adam

17
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betal«m + (1-betal)x*dx
beta2xv + (1l-beta2)x*(dxx*x*2)
X += - learning_rate * m / (np.sqrt(v) + eps)

RMSProp is a variant of AdaGrad that utilizes a moving average
of squared gradients — in particular, unlike AdaGrad, its updates
do not become monotonically smaller. The Adam update rule is in
turn a variant of RMSProp, but with the addition of momentum-
like updates. We refer the reader to the respective sources of these
methods for more detailed analyses of their behavior.
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