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Lecture Plan

Lecture 2: Word Vectors, Word Senses, and Neural Network Classifiers
Course organization (3 mins)

Optimization basics (5 mins)

Review of word2vec and looking at word vectors (12 mins)

More on word2vec (8 mins)

Can we capture the essence of word meaning more effectively by counting? (12m)
Evaluating word vectors (10 mins)

Word senses (10 mins)

Review of classification and how neural nets differ (10 mins)
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Introducing neural networks (10 mins)

Key Goal: To be able to read and understand word embeddings papers by the end of class
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1. Course Organization

First assignment is due before class next Tuesday!
Come to office hours/help sessions!
* They started yesterday (but sorry for the rescheduling mess-up!)
* Come to discuss final project ideas as well as the assignments
* Try to come early, often and off-cycle!
TA office hours: 3-hour blocks Mon—Fri, with multiple TAs
 Just show up! Our friendly course staff will be on hand to assist you!
e https://web.stanford.edu/class/cs224n/office_hours.html

Instructor’s office hours (in person by default):
* Monday 2-4pm, booked via Calendly

* Opening some time tonight, 2 weeks in advance
* | can’t meet everyone, don’t hog the slots!



https://web.stanford.edu/class/cs224n/office_hours.html

2. Optimization: Gradient Descent

* We have a cost function J(6) we want to minimize
e Gradient Descent is an algorithm to minimize J(8)

 Idea: for current value of 8, calculate gradient of J(8), then take small step in direction
of negative gradient. Repeat.

Cost
A Note: Our
objectives
| may not
Learning step be convex
like this ®

But life turns
out to be
okay ©

Minimum

Random
initial value

D>




Gradient Descent

* Update equation (in matrix notation):

Hrew — Hold . CVV@J(@)
I

a = step size or learning rate

* Update equation (for each single parameter 6;):

prew = gt eold J(0)

J

e Algorithm:

while True:
theta grad = evaluate gradient(J,corpus,theta)
theta = theta - alpha * theta grad




Stochastic Gradient Descent

Problem: /(@) is a function of all windows in the corpus (potentially billions!)
» So Vg J(0) is very expensive to compute

* You would wait a very long time before making a single update!

* Very bad idea for pretty much all neural nets!
e Solution: Stochastic gradient descent (SGD) Mini Batch

* Repeatedly sample windows, and update after each one

_ Gradient Descent
e Algorithm:

while True:
window = sample window(corpus)
theta grad = evaluate gradient(J,window,theta)
theta = theta - alpha * theta grad




3. Review: Main idea of word2vec

e Start with random word vectors
e |terate through each word position in the whole corpus

exp (o ve)

ZWEV eXp (uavc)

e Try to predict surrounding words using word vectors: P(o|c) =

P(we—y | wy) P(Weiz | we)

problems  turning crises  as

\ )\ J
Y Y ‘ Y J

e Doing no more than this, this algorithm learns word vectors that capture
well word similarity and meaningful directions in a word space!




Word2vec parameters and computations

U
outside

V
center

U.v,T softmax(U.v,")

dot product  probabilities

“Bag of words” model!

—The model makes the same predictions at each position

I 8

We want a model that gives a reasonably high
probability estimate to all words that occur in the
context (at all often)




Word2vec maximizes objective by putting similar words nearby in space
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4. Word2vec algorithm family: More details

[Mikolov et al. 2013: “Distributed Representations of Words and Phrases and their Compositionality”]

Why two vectors? = Easier optimization. Average both at the end
* But can implement the algorithm with just one vector per word ... and it helps a bit

Two model variants:
1. Skip-grams (SG)
Predict context (“outside”) words (position independent) given center word
2. Continuous Bag of Words (CBOW)
Predict center word from (bag of) context words
We presented: Skip-gram model

Loss functions for training:
1. Naive softmax (simple but expensive loss function, when many output classes)
2. More optimized variants like hierarchical softmax
3. Negative sampling

So far, we explained naive softmax
10




The skip-gram model with negative sampling

 The normalization term is computationally expensive (when many output classes):

exp (U Vc)
ZWEV eXp (u\ZWV UC) ) A big sum over many words

P(olc) =

 Hence, in standard word2vec, you implement the skip-gram model with negative
sampling

* |dea: train binary logistic regressions to differentiate a true pair (center word and a
word in its context window) versus several “noise” pairs (the center word paired with a

random word)
I 11




The skip-gram model with negative sampling [Mikolov et al. 2013] I

We take K negative samples (using word probabilities*)

Maximize probability of real outside word; minimize probability of random words

e Using notation consistent with this class, we minimize:

— T T
]neg—sample (up, v, U) = — log o(Upv,) — 2 log 0(_ukvc)
ke{K sampled indices}
sigmoid rather than softmax

The logistic/sigmoid function: /

* (we’ll become good friends soon) o(x) = *1
14+e* //

« *Sample with P(w) = U(w)3/4/Z, the unigram distribution U(w) raised to the 3/4 power
* The power makes less frequent words be sampled a bit more often
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Stochastic gradients with negative sampling [aside]

 We iteratively take gradients at each window for SGD

* In each window, we only have at most 2m + 1 words plus 2km negative
words with negative sampling, so Vg/:(0) is very sparse!

Vodi(0) =

Ulearning




Stochastic gradients with with negative sampling [aside]

 We might only update the word vectors that actually appear!

e Solution: either yc?u need sparse matrix gpdate qperatlons to ROWS not columns
only update certain rows of full embedding matrices U and V, «—— inactual DL
or you need to keep around a hash for word vectors packages!

|V|[

* If you have millions of word vectors and do distributed
computing, it is important to not have to send gigantic

updates around!
I 14
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5. Why not capture co-occurrence counts directly?

There’s something weird about iterating through the whole corpus (perhaps many times)
Why don’t we just accumulate all the statistics of what words appear near each other??

Building a co-occurrence matrix X

e 2 options: windows vs. full document

*  Window: Similar to word2vec, use window around each word = captures some
syntactic and semantic information (“word space”)

Word-document co-occurrence matrix will give general topics (all sports terms will
have similar entries) leading to “Latent Semantic Analysis” (“document space”)

15




Example: Window based co-occurrence matrix

e Window length 1 (more common: 5-10)
e Symmetric (irrelevant whether left or right context)

e Example corpus:

e |like deep learning
e |like NLP

e |enjoy flying

counts |1 |like | enjoy | deep | leaning | NP | fing |,
0 0 0

enjoy
deep
learning

LP

2

flying
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Co-occurrence vectors

* Simple count co-occurrence vectors
* Vectors increase in size with vocabulary
* Very high dimensional: require a lot of storage (though sparse)
* Subsequent classification models have sparsity issues = Models are less robust

e Low-dimensional vectors

* |ldea: store “most” of the important information in a fixed, small number of
dimensions: a dense vector

e Usually 25-1000 dimensions, similar to word2vec
e How to reduce the dimensionality?

17




Classic Method: Dimensionality Reduction on X (HW1)

Singular Value Decomposition of co-occurrence matrix X

Factorizes X into U2V', where U and V are orthonormal (unit vectors and orthogonal)

% k * % %]

£ X X X ¥ L ; O A A .

£ X ¥ ¥ ¥| =Z|%x % K *x KX X xX x

£ X X X ¥ LR S 4 LS S S S
— -4 — L e — —

, VY Y R S S S

x < U ) \ ,

VT

Retain only k singular values, in order to generalize.

X is the best rank k approximation to X, in terms of least squares.
Classic linear algebra result. Expensive to compute for large matrices.

18




Hacks to X (several used in Rohde et al. 2005 in COALS)

* Running an SVD on raw counts doesn’t work well!!!

Scaling the counts in the cells can help a lot

* Problem: function words (the, he, has) are too frequent = syntax has too much
impact. Some fixes:
* logthe frequencies
*  min(X, t), with t =100
e lIgnore the function words

Ramped windows that count closer words more than further away words

Use Pearson correlations instead of counts, then set negative values to O
* Etc.

19




Interesting semantic patterns emerge in the scaled vectors

DRIVER
¢ JANITOR
oBRIVE SWIMMER
e STUDENT
OCLEAN TEACHER
¢ DOCTOR
e BRIDE
0 SWIM i
o PRIEST
OLEARN  OTEACH /
MARRY
O TREAT OPRAY

A meaning component (doer of event) becomes a linear meaning component in the space!

This is the COALS model from

Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence
20




Encoding meaning components in vector differences
[GloVe: Pennington, Socher, and Manning, EMNLP 2014]

Crucial insight:

We want to capture them as linear meaning components in a word vector space!

Ratios of co-occurrence probabilities can encode meaning components

x = solid X = gas X = water X =random
P(zlice) large small large small
P(g;|steam) small large large small
P(xlice)
large small ~1 ~1

P(z|steam)




Encoding meaning components in vector differences
[GloVe: Pennington, Socher, and Manning, EMNLP 2014]

Crucial insight: Ratios of co-occurrence probabilities can encode meaning components

We want to capture them as linear meaning components in a word vector space!

x = solid X = gas X = water x = fashion
P(xlice) |1.9x10* [6.6x105| 3.0x103 | 1.7x105
P(z|steam) | 2.2x10° | 7.8x10* | 2.2x10% | 1.8x 10"
P(z|ice
(afice) 8.9 8.5 x 1072 1.36 0.96
P(z|steam)




GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space?

A: Log-bilinear model: W; * Wi = log P(”:U)
| | P(z|a)
with vector differences Wy - (’wa — ’wb) = log P(a:|b)
2
Loss: J = Z W W +b; +b logXij) 10 |
i,j=1 [~ Zi
e Fast training Ei

e Scalable to huge corpora




6. How to evaluate word vectors?

* A general concept of evaluation (in NLP): Intrinsic vs. extrinsic
* Intrinsic:
 Evaluation on a specific/intermediate subtask
* Fast to compute
* Helps to understand that system
* Not clear if really helpful unless correlation to real task is established
e Extrinsic:
* Evaluation on a real task
e Can take a long time to compute accuracy
* Unclear if the subsystem is the problem or its interaction or other subsystems
* If replacing exactly one subsystem with another improves accuracy =2 Winning!

24




Intrinsic word vector evaluation

25

Word Vector Analogies

a:b:c:? —

man:woman :: king:?

Evaluate word vectors by how well their
cosine distance after addition captures
intuitive semantic and syntactic analogy
guestions

Discarding the input words from the
search (!!!)

Problem: What if the information is
there but not linear?

T
d = arg max (2 = T + ) @

v ||xb—xa‘|‘xCH

0.75 M

0.5
woman

0.25 man

0 0.25 0.5 0.75



GloVe Visualization
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Meaning similarity: Another intrinsic word vector evaluation

 Word vector distances and their correlation with human judgments
e Example dataset: WordSim353 https://gabrilovich.com/resources/data/wordsim353/wordsim353.html

MM

tiger 7.35
tiger tlger 10

book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CD 1.31

stock jaguar 0.92
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https://gabrilovich.com/resources/data/wordsim353/wordsim353.html

Correlation evaluation

Word vector distances and their correlation with human judgments

Model Size |WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 25.6
SVD-S 6B | 56.5 71.5 71.0 53.6 347
SVD-L 6B | 657 727 751 56.5 37.0
CBOW' 6B | 57.2 656 682 57.0 325
SG' 6B | 62.8 652 69.7 58.1 372
GloVe 6B | 65.8 72.7 77.8 539 38.1
SVD-L 42B| 740 764 74.1 583 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 68.4 79.6 754 594 45.5




Extrinsic word vector evaluation

* One example where good word vectors should help directly: named entity recognition:
 ldentifying references to a person, organization or location: Chris Manning lives in Palo Alto.

Model | Dev Test ACE MUC7
Discrete | 91.0 854 77.4 73.4
SVD 90.8 85.7 71.3 73.7
SVD-S | 91.0 855 77.6 74.3
SVD-L | 90.5 84.8 73.6 71.5
HPCA | 92.6 88.7 81.7 80.7
HSMN | 90.5 85.7 78.7 74.7
CW 022 874 81.7 80.2
CBOW | 93.1 88.2 82.2 81.1
GloVe | 93.2 88.3 829 82.2

.




7. Word senses and word sense ambiguity

 Most words have lots of meanings!
* Especially common words

* Especially words that have existed for a long time

 Example: pike

 Does one vector capture all these meanings or do we have a mess?

I 30



pike

* A sharp point or staff

* Atype of elongated fish

* Arailroad line or system

* Atype of road

* The future (coming down the pike)

* A type of body position (as in diving)

* To kill or pierce with a pike

* To make one’s way (pike along)

e In Australian English, pike means to pull out from doing something:
* | reckon he could have climbed that cliff, but he piked!

31



Improving Word Representations Via Global Context And
Multiple Word Prototypes (Huang et al. 2012)

* |dea: Cluster word windows around words, retrain with each word assigned to multiple
different clusters bank,, bank,, etc.
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Linear Algebraic Structure of Word Senses, with
Applications to Polysemy (arora, ..., Ma, ..., TACL 2018)

« Different senses of a word reside in a linear superposition (weighted
sum) in standard word embeddings like word2vec

" Ppike = *1Vpike, T #2Vpike,* #3Vpike,

f1
fitfotfs’
e Surprising result:

* Where a; = etc., for frequency f

* Because of ideas from sparse coding you can actually separate out
the senses (providing they are relatively common)!

tie
trousers |season scoreline | wires operatic
blouse |teams goalless |cables soprano
waistcoat | winning equaliser |wiring |mezzo
skirt league clinching | electrical | contralto
sleeved | finished scoreless | wire baritone
23 pants championship | replay cable coloratura




8. Deep Learning Classification: Named Entity Recognition (NER)

* The task: find and classify names in text, by labeling word tokens, for example:

Last night , Paris Hilton wowed in a sequin gown .

PER PER
Samuel Quinn was arrested in the Hilton Hotel in Paris in April 1989 .
PER PER LOC LOC LOC DATE DATE

e Possible uses:
* Tracking mentions of particular entities in documents
* For question answering, answers are usually named entities
* Relating sentiment analysis to the entity under discussion
« Often followed by Entity Linking/Canonicalization into a Knowledge Base such as Wikidata
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Simple NER: Window classification using binary logistic classifier

35

Idea: classify each word in its context window of neighboring words

Train logistic classifier on hand-labeled data to classify center word {yes/no} for each
class based on a concatenation of word vectors in a window

 Really, we usually use multi-class softmax, but we’re trying to keep it simple ©
Example: Classify “Paris” as +/— location in context of sentence with window length 2:

the museums in Paris are amazing to see

— T
Xwindow - [ Xmuseums Xin XParis Xare Xamazing]

Resulting vector X, gow =X € R

To classify all words: run classifier for each class on the vector centered on each word
in the sentence




Classification review and notation

e Supervised learning: we have a training dataset consisting of samples
{XoyitViaa

* x;are inputs, e.g., words (indices or vectors!), sentences, documents, etc.

* Dimension d

e y;are labels (one of C classes) we try to predict, for example:
e classes: sentiment (+/-), named entities, buy/sell decision

{location, not-location}

other words

later: multi-word sequences

36




Neural classification

: . exp(W,.x) O
» Typical ML/stats softmax classifier: p(y|z) = —& . ..T g =
e Learned parameters O are just elements 2 =1 &XP(We.z) RN J
of W (not input representation x, which has sparse symbolic features) s . a
» Classifier gives linear decision boundary, which can be limiting %o o
* A neural network classifier differs in that: § . .
* We learn both W and (distributed!) representations for words . g :
* The word vectors x re-represent one-hot vectors, moving them ) ,,.‘ - -
around in an intermediate layer vector space, for easy classification ..o Fias
with a (linear) softmax classifier %, o
« Conceptually, we have an embedding layer: x = Le = _

* We use deep networks—more layers—that let us re-represent and But typically, it is linear

compose our data multiple times, giving a non-linear classifier relative to the pre-final
layer representation
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NER: Binary neural classifier for center word being location

 We do supervised training and want high score if it’s a location
1 gl

0) = a(s) = °~ o
]t’() (8) =177 j

predicted model

probability of class S = uTh *

f=Some element-

[ -linear
0000 0000 wise non
h — f( {"’ €T + b) function, e.g.,
logistic, tanh, ReLU

X =[ Xmuseums Xin Xparis Xare Xamazing]

I x (input)



Training with “cross entropy loss”

* Until now, our objective was stated as to maximize the probability of the correct class y
or equivalently to minimize the negative log probability of that class on training data

 Now restated in terms of cross entropy, a concept from information theory
e Let the true probability distribution be p,' let our computed model probability be g

Zp ) log q(c)

e Assuming a ground truth (or true or gold or target) probability distribution that is 1 at
the right class and O everywhere else, p = [0, ..., 0, 1, 0, ..., 0], then:

e The cross entropy is:

* Because of one-hot p, the only term left as our loss function is the negative log
probability of the true class y:: — log p(y;|x;)

Use this in PyTorch! Cross entropy can be used in other ways with a more interesting p,

but for now just know that you’ll want to use it as the loss in PyTorch
torch.nn.CrossEntropyLoss() ) Y Y




9. Neural computation

40
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A binary logistic regression unit is a bit similar to a neuron

f =nonlinear activation function (e.g. sigmoid), w = weights, b = bias, h = hidden, x = inputs

b: We can have an “always on” bias

h X)= WTX + b)) «— feature, which gives a class prior, or
w’b( ) f( ) separate it out, as a bias term
f(2)= 1

1 .

—Z

+ €

X1 | | 8 | | J
-6 -4 -2 0 2 4 6
X2
r— h,, b(X)
X3 :
w, b are the parameters of this neuron
+1 i.e., this logistic regression model
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A neural network
= running several logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression functions, then we get
a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

42




A neural network
= running several logistic regressions at the same time

We can feed them into another logistic regression function, giving composed functions

It is the final loss
function that will direct
what the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

hyp(X)

Layer L,

43



A neural network

= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network....

p—)
E—
+1 Layer L,
Layer L,

44

This allows us to
re-represent and
compose our data
multiple times and to
learn a classifier that is
highly non-linear in
terms of the original

inputs
(but typically is linear in terms of
the pre-final layer representations)




Matrix notation for a layer

We have
a, = f(W,x, + W,x, + W,x; + b))
a, = f(Wyx, + W,x, + W.x, +b,) a1
etc.

In matrix notation a;
z=Wx+b ]
a=f(z)

Activation fis applied element-wise:

I Fllz 202D =L (). f(2)s f (2]




Non-linearities (like f or sigmoid): Why they’re needed

* Neural networks do function approximation, | x x |
e.g., regression or classification . ’N"_
* Without non-linearities, deep neural networks , x
can’t do anything more than a linear transform - 1
* Extra layers could just be compiled down into a 1
single linear transform: W; W, x = Wx ) N x
* But, with more layers that include non-linearities, . =
they can approximate more complex functions! . :
1 |
" Da coo| Tt ma = '
d .. f = 0 1
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