
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning
Lecture 6: LSTM RNNs and Neural Machine Translation

Lecture Plan

1. Exploding and vanishing gradients (20 mins)
2. Long Short-Term Memory RNNs (LSTMs) (20 mins)
3. Other uses of RNNs (5 mins)
4. Bidirectional and multi-layer RNNs (15 mins)
5. Machine translation (10 mins)
6. Neural machine translation introduction (10 mins)

• Final Projects: Next Tuesday, part of the lecture is about choosing final projects
• It’s fine to just work on Ass 3 and to delay thinking about projects until next week!
• Ass 3 is about neural machine translation (and LSTMs)

2

Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:
• Take sequential input of any length; apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model
• RNNs can be used for many other things (see later)

• Language Modeling is a traditional subcomponent of many NLP tasks, all those
involving generating text or estimating the probability of text:
• Now everything in NLP is being rebuilt upon Language Modeling: GPT-3 is an LM!
• Language modeling can be done with different models, e.g., n-grams or transformers

3

Evaluating Language Models

• The standard evaluation metric for Language Models is perplexity.

• This is equal to the exponential of the cross-entropy loss :

4

Inverse probability of corpus, according to Language Model

Normalized by
number of words

Lower perplexity is better!

RNNs greatly improved perplexity over what came before

n-gram model

Increasingly
complex RNNs

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

5

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

1. Problems with RNNs: Vanishing and Exploding Gradients

6

Vanishing gradient intuition

7

?

Vanishing gradient intuition

8

chain rule!

Vanishing gradient intuition

9

chain rule!

Vanishing gradient intuition

10

chain rule!

Vanishing gradient intuition

11

What happens if these are small?

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

backpropagates further

Vanishing gradient proof sketch (linear case)

• Recall:
• What if were the identity function, ?

• Consider the gradient of the loss on step , with respect
to the hidden state on some previous step . Let

12

(chain rule)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(chain rule)

If Wh is “small”, then this term gets
exponentially problematic as becomes large

(value of)

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Vanishing gradient proof sketch (linear case)

• What’s wrong with ?
• Consider if the eigenvalues of are all less than 1:

• We can write using the eigenvectors of as a basis:

• What about nonlinear activations (i.e., what we use?)
• Pretty much the same thing, except the proof requires
for some dependent on dimensionality and

13 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(eigenvectors)

Approaches 0 as grows, so gradient vanishes

sufficient but
not necessary

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?

14

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are basically updated only with respect to near effects, not long-term effects.

Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7th step and the target word “tickets” at the end.

• But if the gradient is small, the model can’t learn this dependency
• So, the model is unable to predict similar long-distance dependencies at test time

• In practice, a simple RNN will only condition ~7 tokens back [vague rule-of-thumb]

15

Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

• This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)
• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

16

learning rate

gradient

?

Gradient clipping: solution for exploding gradient

17

• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

• In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf

How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• Could we design an RNN with separate memory which is added to?

18

2. LSTMs: Apple WWDC Keynote 2016

Long Short-Term Memory RNNs (LSTMs)

• A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the problem of
vanishing gradients

• Everyone cites that paper but really a crucial part of the modern LSTM is from Gers et al. (2000) 💜

• Only started to be recognized as promising through the work of S’s student Alex Graves c. 2006
• Work in which he also invented CTC (connectionist temporal classification) for speech recognition

• Became really well-known after Hinton brought it to Google in 2013
• Following Graves having been a postdoc with Hinton

20

Hochreiter and Schmidhuber, 1997. Long short-term memory. https://www.bioinf.jku.at/publications/older/2604.pdf
Gers, Schmidhuber, and Cummins, 2000. Learning to Forget: Continual Prediction with LSTM. https://dl.acm.org/doi/10.1162/089976600300015015

Graves, Fernandez, Gomez, and Schmidhuber, 2006. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets.
https://www.cs.toronto.edu/~graves/icml_2006.pdf

https://www.bioinf.jku.at/publications/older/2604.pdf
https://dl.acm.org/doi/10.1162/089976600300015015
https://www.cs.toronto.edu/~graves/icml_2006.pdf

Long Short-Term Memory RNNs (LSTMs)

• On step t, there is a hidden state 𝒉(") and a cell state 𝒄(")

• Both are vectors length n
• The cell stores long-term information
• The LSTM can read, erase, and write information from the cell
• The cell becomes conceptually rather like RAM in a computer

• The selection of which information is erased/written/read is controlled by three
corresponding gates (gates are calculated things whose values are probabilities)
• The gates are also vectors of length n
• On each timestep, each element of the gates can be open (1), closed (0), or

somewhere in-between
• The gates are dynamic: their value is computed based on the current context

21

We have a sequence of inputs 𝑥("), and we will compute a sequence of hidden states ℎ(") and cell states
𝑐("). On timestep t:

Long Short-Term Memory (LSTM)

Al
l t

he
se

 a
re

 v
ec

to
rs

 o
f s

am
e

le
ng

th
 n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

22
Gates are applied using element-wise

(or Hadamard) product: ⊙

⊙

⊙ ⊙

Long Short-Term Memory (LSTM)

23

You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ct-1

ht-1

ct

ht

ft
it ot

ct

ct~

Long Short-Term Memory (LSTM)

24

You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Compute the
forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Compute the
output gate

Write some new cell content

Output some cell content
to the hidden state

The + sign is the secret!

$𝑦"

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

How does LSTM solve vanishing gradients?

• The LSTM architecture makes it much easier for an RNN to
preserve information over many timesteps
• e.g., if the forget gate is set to 1 for a cell dimension and the input gate

set to 0, then the information of that cell is preserved indefinitely.
• In contrast, it’s harder for a vanilla RNN to learn a recurrent weight

matrix Wh that preserves info in the hidden state
• In practice, you get about 100 timesteps rather than about 7

• However, there are alternative ways of creating more direct and linear
pass-through connections in models for long distance dependencies

25

Is vanishing/exploding gradient just an RNN problem?

26

• No! It can be a problem for all neural architectures (including feed-forward and
convolutional neural networks), especially very deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it

backpropagates
• Thus, lower layers are learned very slowly (i.e., are hard to train)

• Another solution: lots of new deep feedforward/convolutional architectures add more
direct connections (thus allowing the gradient to flow)

For example:
• Residual connections aka “ResNet”
• Also known as skip-connections
• The identity connection

preserves information by default
• This makes deep networks much

easier to train
"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Is vanishing/exploding gradient just a RNN problem?

27

Other methods:
• Dense connections aka “DenseNet”
• Directly connect each layer to all future layers!

• Conclusion: Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable
due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

”Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993.pdf

• Highway connections aka “HighwayNet”
• Similar to residual connections, but the identity

connection vs the transformation layer is
controlled by a dynamic gate

• Inspired by LSTMs, but applied to deep
feedforward/convolutional networks

”Highway Networks", Srivastava et al, 2015. https://arxiv.org/pdf/1505.00387.pdf

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf

https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1505.00387.pdf
http://ai.dinfo.unifi.it/paolo/ps/tnn-94-gradient.pdf

3. Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN

28

RNNs can be used as a sentence encoder model

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

e.g., for sentiment classification

29

RNNs can be used as a sentence encoder model

the movie a lotoverall I enjoyed

positive

Sentence
encoding

equals

How to compute
sentence encoding?

Basic way:
Use final hidden

state

e.g., for sentiment classification

30

RNNs can be used as a sentence encoder model

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all

hidden states

e.g., for sentiment classification

31

RNN-LMs can be used to generate text based on other information
e.g., speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

This is an example of a conditional language model.
We’ll see Machine Translation as an example in more detail

32

Input (audio)

<START>

conditioning

RNN-LM

4. Bidirectional and Multi-layer RNNs: motivation

33

terribly exciting !the movie was

positive

Sentence
encoding

element-wise mean/max element-wise mean/max

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie was”).

What about right
context?

In this example,
“exciting” is in the right
context and this
modifies the meaning of
“terribly” (from negative
to positive)

Task: Sentiment Classification

Bidirectional RNNs

34
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

Bidirectional RNNs

35

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean
“compute one forward step of the
RNN” – it could be a simple RNN or
LSTM computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

Bidirectional RNNs: simplified diagram

36

terribly exciting !the movie was

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be the

concatenated forwards+backwards states

Bidirectional RNNs

• Note: bidirectional RNNs are only applicable if you have access to the entire input
sequence
• They are not applicable to Language Modeling, because in LM you only have left

context available.

• If you do have entire input sequence (e.g., any kind of encoding), bidirectionality is
powerful (you should use it by default).

• For example, BERT (Bidirectional Encoder Representations from Transformers) is a
powerful pretrained contextual representation system built on bidirectionality.
• You will learn more about transformers, including BERT, in a couple of weeks!

37

Multi-layer RNNs

• RNNs are already “deep” on one dimension (they unroll over many timesteps)

• We can also make them “deep” in another dimension by
applying multiple RNNs – this is a multi-layer RNN.

• This allows the network to compute more complex representations
• The lower RNNs should compute lower-level features and the higher RNNs should

compute higher-level features.

• Multi-layer RNNs are also called stacked RNNs.

38

Multi-layer RNNs

39
terribly exciting !the movie was

RNN layer 1

RNN layer 2

RNN layer 3

The hidden states from RNN layer i
are the inputs to RNN layer i+1

Multi-layer RNNs in practice

• Multi-layer or stacked RNNs allow a network to compute more complex representations
– they work better than just have one layer of high-dimensional encodings!
• The lower RNNs should compute lower-level features and the higher RNNs should

compute higher-level features.
• High-performing RNNs are usually multi-layer (but aren’t as deep as convolutional or

feed-forward networks)
• For example: In a 2017 paper, Britz et al. find that for Neural Machine Translation, 2 to 4

layers is best for the encoder RNN, and 4 layers is best for the decoder RNN
• Often 2 layers is a lot better than 1, and 3 might be a little better than 2
• Usually, skip-connections/dense-connections are needed to train deeper RNNs

(e.g., 8 layers)
• Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.
• You will learn about Transformers later; they have a lot of skipping-like connections

40 “Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

https://arxiv.org/pdf/1703.03906.pdf

LSTMs: real-world success

• In 2013–2015, LSTMs started achieving state-of-the-art results
• Successful tasks include handwriting recognition, speech recognition, machine

translation, parsing, and image captioning, as well as language models
• LSTMs became the dominant approach for most NLP tasks

• Now (2019–2024), Transformers have become dominant for all tasks
• For example, in WMT (a Machine Translation conference + competition):
• In WMT 2014, there were 0 neural machine translation systems (!)
• In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)
• In WMT 2019: “RNN” 7 times, ”Transformer” 105 times

41

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf
Source: "Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

5. Machine Translation

42

Machine Translation (MT) is the task of translating a sentence x from one language (the
source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

– Rousseau

The early history of MT: 1950s

• Machine translation research began in the early 1950s on machines less
powerful than high school calculators (before term “A.I.” coined!)

• Concurrent with foundational work on automata, formal languages,
probabilities, and information theory

• MT heavily funded by military, but basically just simple rule-based
systems doing word substitution

• Human language is more complicated than that, and varies more across
languages!

• Little understanding of natural language syntax, semantics, pragmatics
• Problem soon appeared intractable

1 minute video showing 1954 MT:
https://youtu.be/K-HfpsHPmvw

https://youtu.be/K-HfpsHPmvw

The early history of MT: 1950s

1990s-2010s: Statistical Machine Translation

• Core idea: Learn a probabilistic model from data
• Suppose we’re translating French → English.
• We want to find best English sentence y, given French sentence x

• Use Bayes Rule to break this down into two components to be learned
separately:

Translation Model

Models how words and phrases
should be translated (fidelity).

Learned from parallel data.

Language Model

Models how to write
good English (fluency).

Learned from monolingual data.45

What happens in translation isn’t trivial to model!

1519年600名西班牙人在墨西哥登陆，去征服几百万人口
的阿兹特克帝国，初次交锋他们损兵三分之二。
In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of soldiers against their loss.
translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.
translate.google.com (2015): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash.

1990s–2010s: Statistical Machine Translation

• SMT was a huge research field
• The best systems were extremely complex
• Hundreds of important details

• Systems had many separately-designed subcomponents
• Lots of feature engineering
• Need to design features to capture particular language phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!

47

2014

MT research

NeuralMachineTranslation

(dramatic reenactment)
48

6. What is Neural Machine Translation?

49

• Neural Machine Translation (NMT) is a way to do Machine Translation with a single
end-to-end neural network

• The neural network architecture is called a sequence-to-sequence model (aka seq2seq)
and it involves two RNNs

En
co

de
r R

N
N

Neural Machine Translation (NMT)

<START>

Source sentence (input)

il m’ a entarté

The sequence-to-sequence model
Target sentence (output)

Decoder RN
N

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.
Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

he

ar
gm

ax

he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior: decoder
output is fed in as next step’s input

with a pie <END>

me with a pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

50

Sequence-to-sequence is versatile!

• The general notion here is an encoder-decoder model
• One neural network takes input and produces a neural representation
• Another network produces output based on that neural representation
• If the input and output are sequences, we call it a seq2seq model

• Sequence-to-sequence is useful for more than just MT
• Many NLP tasks can be phrased as sequence-to-sequence:
• Summarization (long text → short text)
• Dialogue (previous utterances → next utterance)
• Parsing (input text → output parse as sequence)
• Code generation (natural language → Python code)

51

Neural Machine Translation (NMT)

• The sequence-to-sequence model is an example of a Conditional Language Model
• Language Model because the decoder is predicting the next word of the target sentence y
• Conditional because its predictions are also conditioned on the source sentence x

• NMT directly calculates :

• Question: How to train an NMT system?
• (Easy) Answer: Get a big parallel corpus…
• But there is now exciting work on “unsupervised NMT”, data augmentation, etc.

Probability of next target word, given
target words so far and source sentence x

52

Training a Neural Machine Translation system

En
co

de
r R

N
N

Source sentence (from corpus)

<START> he hit me with a pieil m’ a entarté

Target sentence (from corpus)

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Decoder RN
N

"𝑦!	 "𝑦#	 "𝑦$	 "𝑦%	 "𝑦&	 "𝑦'	 "𝑦(

𝐽!	 𝐽#	 𝐽$	 𝐽%	 𝐽&	 𝐽'	 𝐽(

= negative log
prob of “he”

𝐽 =
1
𝑇
(
)*!

+

𝐽) = + + + + + +

= negative log
prob of <END>

= negative log
prob of “with”

53

Multi-layer deep encoder-decoder machine translation net

Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated over the weekend

0.2
0.6

-0.1
-0.7
0.1

0.4
-0.6
0.2

-0.3
0.4

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1

-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.1
0.3

-0.1
-0.7
0.1

-0.2
0.6
0.1
0.3
0.1

-0.4
0.5

-0.5
0.4
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.2
-0.1
0.1
0.1

0.2
0.6

-0.1
-0.7
0.1

0.1
0.3

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.4
0.1

0.2
-0.8
-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
0.3
0.1

-0.1
0.6

-0.1
0.3
0.1

0.2
0.4

-0.1
0.2
0.1

0.3
0.6

-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.1
-0.1
-0.7
0.1

0.1
0.3
0.1

-0.4
0.2

0.2
0.6

-0.1
-0.7
0.1

0.4
0.4
0.3

-0.2
-0.3

0.5
0.5
0.9

-0.3
-0.2

0.2
0.6

-0.1
-0.5
0.1

-0.1
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.3
0.6

-0.1
-0.7
0.1

0.4
0.4

-0.1
-0.7
0.1

-0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

-0.3
0.5

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

The protests escalated over the weekend <EOS>

Encoder:
Builds up
sentence
meaning

Source
sentence

Translation
generated

Feeding in
last word

Decoder

Conditioning =
Bottleneck

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i
are the inputs to RNN layer i+1

54

NMT: the first big success story of NLP Deep Learning

55

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone had
• https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

• This was amazing!
• SMT systems, built by hundreds of engineers over many years, were outperformed

by NMT systems trained by small groups of engineers in a few months

In summary

56

Lots of new information today! What are some of the practical takeaways?

1. LSTMs are powerful 2. Clip your gradients

3. Use bidirectionality
when possible

4. Encoder-Decoder Neural Machine
Translation Systems work very well

Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated over the weekend

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
4

-
0
.
6
0

.
2
-
0
.

3
0
.
4

0
.
2

-
0
.
3
-

0
.
1
-
0

.
4
0
.
2

0
.
2

0
.
4
0
.

1
-
0
.
5

-
0
.
2

0
.
4

-
0
.
2
-

0
.
3
-
0

.
4
-
0
.

2

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

-
0
.

1
0
.
3
-

0
.
1
-
0

.
7
0
.
1

-
0
.

2
0
.
6
0

.
1
0
.
3

0
.
1

-
0
.

4
0
.
5
-

0
.
5
0
.

4
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
2

-
0
.
2
-

0
.
1
0
.

1
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
1

0
.
3
-
0

.
1
-
0
.

7
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

4
0
.
1

0
.
2

-
0
.
8
-

0
.
1
-
0

.
5
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

-
0
.

4
0
.
6
-

0
.
1
-
0

.
7
0
.
1

0
.
2

0
.
6
-
0

.
1
0
.
3

0
.
1

-
0
.

1
0
.
6
-

0
.
1
0
.

3
0
.
1

0
.
2

0
.
4
-
0

.
1
0
.
2

0
.
1

0
.
3

0
.
6
-
0

.
1
-
0
.

5
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
2

-
0
.
1
-

0
.
1
-
0

.
7
0
.
1

0
.
1

0
.
3
0
.

1
-
0
.
4

0
.
2

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
4

0
.
4
0
.

3
-
0
.
2

-
0
.
3

0
.
5

0
.
5
0
.

9
-
0
.
3

-
0
.
2

0
.
2

0
.
6
-
0

.
1
-
0
.

5
0
.
1

-
0
.

1
0
.
6
-

0
.
1
-
0

.
7
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
3

0
.
6
-
0

.
1
-
0
.

7
0
.
1

0
.
4

0
.
4
-
0

.
1
-
0
.

7
0
.
1

-
0
.

2
0
.
6
-

0
.
1
-
0

.
7
0
.
1

-
0
.

4
0
.
6
-

0
.
1
-
0

.
7
0
.
1

-
0
.

3
0
.
5
-

0
.
1
-
0

.
7
0
.
1

0
.
2

0
.
6
-
0

.
1
-
0
.

7
0
.
1

The protests escalated over the weekend <EOS>

Encoder:
Builds up
sentence
meaning

Source
sentence

Translation
generated

Feeding in last
word

Decoder

Conditioning =
Bottleneck

