
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning

Lecture 3: Neural net learning: Gradients by hand (matrix calculus)
and algorithmically (the backpropagation algorithm)

1. Introduction

2

Assignment 2 makes sure you really understand the math of neural networks … then we’ll
let the software do it! It also teaches us about dependency parsing.

We’ll go through all the math quickly today, but this is the one week of quarter to most
work through the readings!!!

This will be a tough week for some! à Make sure to get help if you need it:
Visit office hours! Read tutorial materials on the syllabus!

Thursday will be mainly linguistics! Some people find that tough too. 😉

PyTorch tutorial: 3:30pm Friday Apr 12 in Gates B01
A great chance to get an intro to PyTorch, a key deep learning package, used in Ass 2+!

Where we ended last time: A neural network
= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network….

3

This allows us to
re-represent and
compose our data
multiple times and to
learn a classifier that is
highly non-linear in
terms of the original
inputs
(but, typically, is linear in terms of
the pre-final layer representations)

Matrix notation for a layer

We have

In matrix notation

Activation f is applied element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 + b1)
a2 = f (W21x1 +W22x2 +W23x3 + b2)
etc.

z =Wx + b
a = f (z)

f ([z1, z2, z3]) = [f (z1), f (z2), f (z3)]

W12

b3

4

NER: Binary classification for center word being location

• We do supervised training and want high score if it’s a location

	 𝐽! 𝜃 = 𝜎 𝑠 =
1

1 + 𝑒"#

5

x = [xmuseums xin xParis xare xamazing]

predicted model
probability of class

f = Some element-
wise non-linear
function, e.g.,
logistic, tanh, ReLU

∈ R5d

Embedding of
1-hot words

7. Neural computation

6

Original McCulloch & Pitts
 1943 threshold unit:
 𝟏(𝑊𝑥 > 𝜃)
 = 	𝟏(𝑊𝑥 − 𝜃 > 0)
This function has no slope,
so, no gradient-based learning

tanh is just a rescaled and shifted sigmoid (2×as steep, [−1,1]):

Logistic and tanh are still used (e.g., logistic to get a probability)
However, now, for deep networks, the first thing to try is ReLU: it
trains quickly and performs well due to good gradient backflow.
ReLU has a negative “dead zone” that recent proposals mitigate
GELU/Swish often used with Transformers (BERT, RoBERTa, etc.)

Non-linearities, old and new

logistic (“sigmoid”) tanh hard tanh ReLU

tanh(z) = 2logistic(2z)−1

1

0

1

−1

Swish arXiv:1710.05941
swish 𝑥 = 𝑥 ' logistic(𝑥)

ReLU 𝑧 = max(𝑧, 0)

(Rectified Linear Unit) Leaky ReLU /
Parametric ReLU

0

0
0

GELU arXiv:1606.08415
GELU 𝑥
			= 𝑥 2 𝑃 𝑋 ≤ 𝑥 , 𝑋~𝑁(0,1)
 ≈ 𝑥 2 logistic(1.702𝑥)

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1606.08415

Non-linearities (i.e., “f ” on previous slide): Why they’re needed

8

• Neural networks do function approximation,
e.g., regression or classification
• Without non-linearities, deep neural networks

can’t do anything more than a linear transform
• Extra layers could just be compiled down into a

single linear transform: W1 W2 x = Wx
• But, with more layers that include non-linearities,

they can approximate any complex function!

Remember: Stochastic Gradient Descent

Update equation:

i.e., for each parameter: 𝜃!"#$ = 𝜃!%&' − 𝛼
() *
(*!

"#$

In deep learning, 𝜃 includes the data representation (e.g., word vectors) too!

How can we compute ∇*𝐽(𝜃)?
1. By hand
2. Algorithmically: the backpropagation algorithm

𝛼 = step size or learning rate

9

Lecture Plan

Lecture 4: Gradients by hand and algorithmically
1. Introduction (10 mins)
2. Matrix calculus (35 mins)
3. Backpropagation (35 mins)

Key Learning: The mathematics and practical implementation of how neural networks are
trained by backpropagation

10

Computing Gradients by Hand

11

• Matrix calculus: Fully vectorized gradients
• “Multivariable calculus is just like single-variable calculus if you use matrices”
• Much faster and more useful than non-vectorized gradients
• But doing a non-vectorized gradient can be good for intuition; recall the first

lecture for an example
• Lecture notes and matrix calculus notes cover this material in more detail
• You might also review Math 51, which has an online textbook:

http://web.stanford.edu/class/math51/textbook.html

http://web.stanford.edu/class/math51/textbook.html

12

Gradients

13

• Given a function with 1 output and 1 input
 𝑓 𝑥 = 𝑥+

• It’s gradient (slope) is its derivative
',
'- = 3𝑥.

“How much will the output change if we change the input a bit?”
At x = 1 it changes about 3 times as much: 1.013 = 1.03
At x = 4 it changes about 48 times as much: 4.013 = 64.48

Gradients

• Given a function with 1 output and n inputs

• Its gradient is a vector of partial derivatives with
respect to each input

14

Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs

• It’s Jacobian is an m x n matrix of partial derivatives

15

Chain Rule

• For composition of one-variable functions: multiply derivatives

• For multiple variables functions: multiply Jacobians

16

Example Jacobian: Elementwise activation Function

17

Example Jacobian: Elementwise activation Function

Function has n outputs and n inputs → n by n Jacobian

18

Example Jacobian: Elementwise activation Function

19

Example Jacobian: Elementwise activation Function

20

Example Jacobian: Elementwise activation Function

21

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

22

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

23

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

24

Fine print: This is the correct Jacobian.
Later we discuss the “shape convention”;
using it the answer would be h.

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

25

Back to our Neural Net!

x = [xmuseums xin xParis xare xamazing]

26

Back to our Neural Net!

• Let’s find

• Really, we care about the gradient of the loss Jt but we will compute the
gradient of the score for simplicity (and because the logistic is in Ass 1!)

27

x = [xmuseums xin xParis xare xamazing]

1. Break up equations into simple pieces

28

Carefully define your variables and keep track of their dimensionality!

2. Apply the chain rule

29

2. Apply the chain rule

30

2. Apply the chain rule

31

2. Apply the chain rule

32

3. Write out the Jacobians

Useful Jacobians from previous slide

33

3. Write out the Jacobians

34

𝒖!

Useful Jacobians from previous slide

3. Write out the Jacobians

35

𝒖!

Useful Jacobians from previous slide

3. Write out the Jacobians

36

𝒖!

Useful Jacobians from previous slide

3. Write out the Jacobians

37

𝒖!

𝒖!
Useful Jacobians from previous slide

.

⊙	 = Hadamard product =
element-wise multiplication
of 2 vectors to give vector

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

38

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

The same! Let’s avoid duplicated computation …

39

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

40

𝛿 is the upstream gradient (“error signal”)

𝒖!

Derivative with respect to Matrix: Output shape

• What does look like?

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do

41

Derivative with respect to Matrix: Output shape

• What does look like?

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do

• Instead, we leave pure math and use the shape convention:
the shape of the gradient is the shape of the parameters!

• So is n by m:

42

Derivative with respect to Matrix

• What is

• is going to be in our answer

• The other term should be because

• Answer is:

43

𝛿 is upstream gradient (“error signal”) at 𝑧
𝑥 is local input signal

Why the Transposes?

44

• Hacky answer: this makes the dimensions work out!
• Useful trick for checking your work!

• Full explanation in the lecture notes
• Each input goes to each output – you want to get outer product

Deriving local input gradient in backprop

• For "𝒛
"𝑾

 in our equation:

• Let’s consider the derivative of a single weight Wij

• Wij only contributes to zi
• For example: W23 is only

used to compute z2 not z1

45

x1 x2 x3 +1

f(z1)= h1 h2 =f(z2)

s u2

W23
b2

𝜕𝑠
𝜕𝑾

= 𝜹
𝜕𝒛
𝜕𝑾

= 𝜹
𝜕
𝜕𝑾

(𝑾𝒙 + 𝒃)

𝜕𝑧1
𝜕𝑊1!

=
𝜕

𝜕𝑊1!
𝑾12𝒙 + 𝑏1

 = (
(3%!

 ∑456' 𝑊14𝑥4 = 𝑥!

What shape should derivatives be?

• Similarly, is a row vector

• But shape convention says our gradient should be a column vector because b is
a column vector …

• Disagreement between Jacobian form (which makes the chain rule
easy) and the shape convention (which makes implementing SGD easy)

• We expect answers in the assignment to follow the shape convention

• But Jacobian form is useful for computing the answers

46

What shape should derivatives be?
Two options for working through specific problems:

1. Use Jacobian form as much as possible, reshape to
follow the shape convention at the end:

• What we just did. But at the end transpose to make the
derivative a column vector, resulting in

2. Always follow the shape convention
• Look at dimensions to figure out when to transpose and/or

reorder terms

• The error message 𝜹 that arrives at a hidden layer has the
same dimensionality as that hidden layer

47

3. Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized, multivariate, or matrix)
chain rule

One more concept:

We re-use derivatives computed for higher layers in computing
derivatives for lower layers to minimize computation

48

Computation Graphs and Backpropagation

� + �

• Software represents our neural
net equations as a graph

• Source nodes: inputs

• Interior nodes: operations

49

Computation Graphs and Backpropagation

� + �

• Software represents our neural
net equations as a graph

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the
operation

50

Computation Graphs and Backpropagation

� + �

• Software represents our neural
net equations as a graph

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the
operation

“Forward Propagation”

51

Backpropagation

� + �

• Then go backwards along edges

• Pass along gradients

52

Backpropagation: Single Node

• Node receives an “upstream gradient”

• Goal is to pass on the correct
“downstream gradient”

Upstream
gradient 53

Downstream
gradient

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient54

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient55

Chain
rule!

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient

• [downstream gradient] = [upstream gradient] x [local gradient]

56

Backpropagation: Single Node

*

• What about nodes with multiple inputs?

57

Backpropagation: Single Node

Downstream
gradients

Upstream
gradient

Local
gradients

*

• Multiple inputs → multiple local gradients

58

An Example

59

An Example

+

*
max

60

Forward prop steps

An Example

+

*
max

61

Forward prop steps

6

3

2

1

2

2

0

An Example

+

*
max

62

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*
max

63

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*
max

64

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*
max

65

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*
max

66

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

1*3 = 3

1*2 = 2

An Example

+

*
max

67

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

3

2

3*1 = 3

3*0 = 0

An Example

+

*
max

68

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

3

2

3

0

2*1 = 2

2*1 = 2

An Example

+

*
max

69

Forward prop steps

6

3

2

1

2

2

0

Local gradients

1

3

2

3

0

2

2

Gradients sum at outward branches

70

+

Gradients sum at outward branches

71

+

Node Intuitions

+

*
max

72

6

3

2

1

2

2

0

1

2
2

2

• + “distributes” the upstream gradient to each summand

Node Intuitions

+

*
max

73

6

3

2

1

2

2

0

1

33

0

• + “distributes” the upstream gradient to each summand

• max “routes” the upstream gradient

Node Intuitions

+

*
max

74

6

3

2

1

2

2

0

1

3

2

• + “distributes” the upstream gradient

• max “routes” the upstream gradient

• * “switches” the upstream gradient

Efficiency: compute all gradients at once

* + �

• Incorrect way of doing backprop:

• First compute

75

Efficiency: compute all gradients at once

* + �

• Incorrect way of doing backprop:

• First compute

• Then independently compute

• Duplicated computation!

76

Efficiency: compute all gradients at once

* + �

• Correct way:

• Compute all the gradients at once

• Analogous to using 𝜹 when we
computed gradients by hand

77

1. Fprop: visit nodes in topological sort order
- Compute value of node given predecessors

2. Bprop:
 - initialize output gradient = 1
 - visit nodes in reverse order:

 Compute gradient wrt each node using
 gradient wrt successors

Done correctly, big O() complexity of fprop and
bprop is the same

In general, our nets have regular layer-structure
and so we can use matrices and Jacobians…

Back-Prop in General Computation Graph

…

…

Inputs

 = successors of

Single scalar output

78

Automatic Differentiation

• The gradient computation can be
automatically inferred from the symbolic
expression of the fprop

• Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output

• Modern DL frameworks (Tensorflow,
PyTorch, etc.) do backpropagation for
you but mainly leave layer/node writer
to hand-calculate the local derivative

79

Backprop Implementations

80

Implementation: forward/backward API

81

Implementation: forward/backward API

82

Manual Gradient checking: Numeric Gradient

• For small h (≈ 1e-4),

• Easy to implement correctly

• But approximate and very slow:

• You have to recompute f for every parameter of our model

• Useful for checking your implementation

• In the old days, we hand-wrote everything, doing this everywhere was the key test

• Now much less needed; you can use it to check layers are correctly implemented

83

Summary

84

We’ve mastered the core technology of neural nets! 🎉 🎉 🎉

• Backpropagation: recursively (and hence efficiently) apply the chain rule
along computation graph
• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations and save intermediate
values

• Backward pass: apply chain rule to compute gradients

Why learn all these details about gradients?

85

• Modern deep learning frameworks compute gradients for you!
• Come to the PyTorch introduction this Friday!

• But why take a class on compilers or systems when they are implemented for you?
• Understanding what is going on under the hood is useful!

• Backpropagation doesn’t always work perfectly out of the box
• Understanding why is crucial for debugging and improving models
• See Karpathy article (in syllabus):
• https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

• Example in future lecture: exploding and vanishing gradients

