Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Christopher Manning

Lecture 3: Neural net learning: Gradients by hand (matrix calculus)
and algorithmically (the backpropagation algorithm)

1. Introduction

Assignment 2 makes sure you really understand the math of neural networks ... then we’ll
let the software do it! It also teaches us about dependency parsing.

We’'ll go through all the math quickly today, but this is the one week of quarter to most
work through the readings!!!

This will be a tough week for some! - Make sure to get help if you need it:

Visit office hours! Read tutorial materials on the syllabus!

Thursday will be mainly linguistics! Some people find that tough too. &

PyTorch tutorial: 3:30pm Friday Apr 12 in Gates BO1
I A great chance to get an intro to PyTorch, a key deep learning package, used in Ass 2+!
2

Where we ended last time: A neural network

= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network....

p—)
E—
+1 Layer L,
Layer L,

This allows us to
re-represent and
compose our data
multiple times and to
learn a classifier that is
highly non-linear in
terms of the original

inputs
(but, typically, is linear in terms of
the pre-final layer representations)

Matrix notation for a layer

We have
a, = f(W,x, + W,x, + W,x; + b))
a, = f(Wyx, + W,x, + W.x, +b,) a1
etc.

In matrix notation a;
z=Wx+b]
a=f(z)

Activation fis applied element-wise:

I Fllz 202D =L (). f(2)s f (2]

NER: Binary classification for center word being location

 We do supervised training and want high score if it’s a location

) 1 gl ®
]t[(e) =o(s) = 1+es | j |

i T
predlct-egl model S — U h
probability of class

f=Some element-

h — f(W.’E _|_ b) 0000 0000 wise non-linear

function, e.g.,
logistic, tanh, ReLU

4 (1nput) €E R4 (0000 0000 0000 0000 0000

Embedding of

X =[Xmuseums Xin XParis Xare Xamazin]
87 | 1-hot words

7. Neural computation

NMyeln
sheath

Terriral butl;u—-jt N\

Original McCulloch & Pitts ,
1943 threshold unit:
1(Wx > 0)
= 1Wx -6 > 0)

This function has no slope, 4

so, no gradient-based learning

Non-linearities, old and new

(Rectified Linear Unit) Leaky RelLU /

logistic (“sigmoid”) tanh hard tanh RelLU Parametric RelLU
1 e’ —e ? 1 ifx<—1
z) = tanh(z) = ardTanh(x) = { x if —1<=x<=1 ReLU(z) = max(z, 0
1) 1+ exp(—2) () e* +e* ettt { 1 ifx>11<) @ (2.0
0%
. o=

O_ - _| 8 | | _1

3 -2 -1 0 1 2 3
X

tanh is just a rescaled and shifted sigmoid (2 X as steep, [-1,1]): GELU arxiv:1606.08415

Swish arxiv:1710.05941

tanh(z) = 2logistic(2z) -1 - — % - logisti GELU(x)
(2) g (2z2) swish(x) = x - logistic(x) — x+ P(X < x), X~N(0,1)
Logistic and tanh are still used (e.g., logistic to get a probability) ~ x - logistic(1.702x)

However, now, for deep networks, the first thing to try is RelLU: it : Sraees
trains quickly and performs well due to good gradient backflow. i

ReLU has a negative “dead zone” that recent proposals mitigate 0 — EEEEEEES
GELU/Swish often used with Transformers (BERT, RoBERTa, etc.)

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1606.08415

Non-linearities (i.e., “f” on previous slide): Why they’re needed

* Neural networks do function approximation, | x x |
e.g., regression or classification . ’N"_
* Without non-linearities, deep neural networks , x
can’t do anything more than a linear transform - 1
* Extra layers could just be compiled down into a 1
single linear transform: W; W, x = Wx) N x
* But, with more layers that include non-linearities, . =
they can approximate any complex function! . :
1 |
" Da coo| Tt ma = '
d .. f = 0 1

Remember: Stochastic Gradient Descent

Update equation:

prew — Hold . CVV@J(@)

a = step size or learning rate

aJ(6)

i.e., for each parameter: 7" = 6°'¢ — a ~gold
J

In deep learning, 0 includes the data representation (e.g., word vectors) too!

How can we compute Vy/(6)?
1. By hand
I 2. Algorithmically: the backpropagation algorithm
9

Lecture Plan

Lecture 4: Gradients by hand and algorithmically
1. Introduction (10 mins)

2. Matrix calculus (35 mins)

3. Backpropagation (35 mins)

Key Learning: The mathematics and practical implementation of how neural networks are
trained by backpropagation

I 10

Computing Gradients by Hand

11

Matrix calculus: Fully vectorized gradients

)

“Multivariable calculus is just like single-variable calculus if you use matrices’
Much faster and more useful than non-vectorized gradients

But doing a non-vectorized gradient can be good for intuition; recall the first
lecture for an example

Lecture notes and matrix calculus notes cover this material in more detail

You might also review Math 51, which has an online textbook:
http://web.stanford.edu/class/math51/textbook.html

http://web.stanford.edu/class/math51/textbook.html

12

Linear Algebra, Multivariable Calculus,
and Modern Applications

Math 51 course text prepared by the
Stanford University Math Department

Last modified on April 3, 2024

“...research on neural networks was held up for 20 years until somebody remembered the Chain Rule!”
T. Griffiths, Luce Professor of Information Technology, Consciousness, and Culture (Princeton)

“... linear algebra simplifies the complex processes that underlie neural network operations, |. . . | allowing
[AI models] to efficiently process vast amounts of data, recognize patterns, and make decisions.”

Medium article “The Crucial Role of Mathematics in Al Development”

G. Neural networks and the multivariable Chain Rule (optional)

The ability of computers to identify high-level patterns through experience (i.e., machine-learning
based on training data) has been demonstrated quite spectacularly with AlphaGo (and its descendants
such as AlphaZero). This is based on the concept of a neural network, which we discuss here in order
to identify where an essential mathematical insight occurs involving the multivariable Chain Rule.

G.1. Mathematical model of a neural network as a composition of functions. Consider the task of
a computer being given a picture with 1000 pixels (encoded as a vector in R'°?) and aiming to determine
whether or not it is a picture of a cat. The output of the computer’s work will be a single real number
between 0 and 1 that measures how likely it is that the picture is of a cat.

The overall process of feeding the picture into the computer and extracting the output from the com-
puter should be given by evaluating a function f.,, : R'®® — R on a 1000-vector that encodes the input
of the pixel intensities. The desired features of f... are:

e if the input is a picture of a cat, f,, returns a value > 0.5,
o if the input is not a picture of a cat then f,, returns a value < 0.5.

This is a “classifier” problem (cat or not cat?), and the computer needs to construct such a function! The
process of building f.,, inside a computer (in a way we describe below) is an instance of “machine learn-
ing”. It must be kept in mind that the function f,, constructed by the computer will be an extraordinarily
non-linear function, far too complicated for any human to ever discover or write down.

Two different computers working on this same “machine learning” task may build very different func-
tions fear. All that matters is that the function does a good job at answering “cat or not cat?”; many
different functions may perform equally well at this task, and we only care that the computer constructs an
fear that works well in practice. The process by which f.,, is built inside a computer involves expressing
it as a composition of many intermediate vector-valued functions (that also have to be constructed by the
computer), and this all makes essential use of multivariable differential calculus, as we will explain below.

From a mathematical point of view, a neural network is an expression of a function f : R* — R™
(often m = 1, as for fe.. above) as a composition of (typically highly non-linear) vector-valued functions:

R 5 Ré ByRe 8 Nypdes g
in which R" on the left is called the input layer, R™ on the right is called the output layer, and each R% in
between is called a hidden layer. Such a composition involving N functions f; is called an N-layer neural
network (so a single-layer network involves no hidden layers and so no function composition at all).

Defining dy = n and dy = m for convenience of notation, we refer to R% as the jth layer (with
j=0,1,...,N) and call d; the number of nodes in that layer. Each function f; describes how to get from
the output of the (i — 1)th layer (which means just the input when 7 = 1) to the next layer. If we denote a
vectorin R% as x; = (z1,...,Za,,;) then (for reasons based on analogies with the behavior of neurons in
abrain) each z; ; is called a neuron, hence the name “neural network” for the overall function composition
process. Many people dislike the analogies with a brain and so avoid such terminology, instead referring
to each z; ; as a unit and calling the overall composition process a multi-layer perceptron.

Copyright © 2021 Stanford University Department of Mathematics. All rights reserved. Page 697
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed.

Gradients

* Given a function with 1 output and 1 input

flx) =x°

* |t's gradient (slope) is its derivative

“How much will the output change if we change the input a bit?”
At x = 1 it changes about 3 times as much: 1.013=1.03
At x = 4 it changes about 48 times as much: 4.013 = 64.48

13

Gradients

e Given a function with 1 output and n inputs

f(il?‘) — f(:cl, LYy euns .I'n)

* Its gradient is a vector of partial derivatives with
respect to each input

of _[of of of
ox | 0x1 Oxa’ " Oz

I 14

Jacobian Matrix: Generalization of the Gradient

* Given a function with m outputs and n inputs

flx) =|fi(z1,22,....;Tn),s oy frin(T1, T2y ..o, T

* It’s Jacobian is an m x n matrix of partial derivatives

T © T
a_‘f — . 1 - <ﬂ> _9fi
N T T 9
L 0x1 "o ox,, -

Chain Rule

* For composition of one-variable functions: multiply derivatives
z = 3y

y =a’

dz_dz@_

e d_ydx = (3)(2x) = 6z

 For multiple variables functions: multiply Jacobians

h = f(z)
z=Wax+0b
oh 0Oh 0z

I ox ~ 9z ox

Example Jacobian: Elementwise activation Function

h = f(z),what is 8—h‘7 h,z ¢ R"

h; = f(Zz) o=

Example Jacobian: Elementwise activation Function

h = f(z),what is O_h? h,z ¢ R"

h; = f(Zz) o=

Function has n outputs and n inputs - n by n Jacobian

Example Jacobian: Elementwise activation Function

Oh
h = f(z),what is 6‘_? h,z ¢ R"
<
hi = f(z)
(g—}ZL)U = ggj % f(z;) definition of Jacobian

Example Jacobian: Elementwise activation Function

h = f(z),what is Z—Z?
hi = f(zi)

oh\ oh, 0 .
(8_Z>zj - O0zj a—zjf(%)

)0 if otherwise

h,z e R"

definition of Jacobian

regular 1-variable derivative

Example Jacobian: Elementwise activation Function

h = f(z),what is g—};?
hi = f(2i)
oh oh; 0 |
(8_Z>zj - O0zj a—ZJf(ZZ)
_ () ifi=g
0 if otherwise
9 [F'(z1)

IM =\ 0

h,z e R"

definition of Jacobian

regular 1-variable derivative

0
= diag(f'(z))

f'(zn))

Other Jacobians

0

Other Jacobians

9,
8—w(Wa: +b)=W
%(Ww + b) = I (Identity matrix)

Other Jacobians

0

é Wax + b) = I (Identity matrix
0b

3 T T Fine print: This is the correct Jacobian.
_— (u h) p— h Later we discuss the “shape convention”;

au using it the answer would be h.

Other Jacobians

i(Wmntb) =W

ox

%(Ww + b) = I (Identity matrix)
O (Tpy _ pT

501 (u”h)=nh

e Compute these at home for practice!

* Check your answers with the lecture notes
I 25

Back to our Neural Net!

h = f(WZE + b) 0000 0000

X =[Xmuseums Xin Xparis Xare Xamazing]

I x (input)

Back to our Neural Net!

e Let’s find @
Ob

* Really, we care about the gradient of the loss J, but we will compute the
gradient of the score for simplicity (and because the logistic is in Ass 1!)

S = ’U,Th x
h = f(WLE + b) 0000 0000
€T (input) 0000 0000 0000 0000 0000

X =[Xmuseums Xin Xparis Xare Xamazing]
27

1. Break up equations into simple pieces

s=ulh s=ulh

h=f(Wz + b) h = f(z)
z=Wx+0b

x (input) x (input)

I Carefully define your variables and keep track of their dimensionality!
28

2. Apply the chain rule

SZUTh @:aSahaZ
h = f(2) ob 0Oh 0z 0b
z=Wx+0b

x (input)

2. Apply the chain rule

s=ulh

h = f(z)
z=Wx+0b
x (input)

0s
0b

0s

Oh 0z

Oh

0z 0b

2. Apply the chain rule

SZUTh @:&Sfﬁtﬁz
h = f(2) 0ob Oh|0z |0b
z=Wx+0b

x (input)

2. Apply the chain rule

s=ulh

h = f(z)

z=Wx+0b

x (input)

0s 0s Oh

0z

ob ~ Oh 0z

0b

3. Write out the Jacobians

s=ulh Os 0O0s Oh 0z
h = f(z) ob ~ Oh 0z 0Ob
z=Wx+0b
x (input)

Useful Jacobians from previous slide

0 T . T
(9_u(u h)=~h
7 (7(2) = diag(f(2)

0
W _J
I 8b(x + b)
33

3. Write out the Jacobians

s=u'h Os 0O0s Oh 0z
h = f(z) ob ~ Oh 0z 0Ob
=Wz +b l
x (input) uTl

Useful Jacobians from previous slide

0 T . T
(9_u(u h)=~h
7 (7(2) = diag(f(2)

0
il T
I ab(W:I: + b)
34

3. Write out the Jacobians

s=u'h

h = f(z)
z=Wx+0b
x (input)

0s s Oh 0z

b~ oh 0z ab
|

u” diag(f'(2))

Useful Jacobians from previous slide

0 T . T

(9_u(u h)=~h

7 (7(2) = diag(f(2)
0

%(W:B +b)=1

3. Write out the Jacobians

s=u'h

h = f(z)
z=Wx+0b
x (input)

0s s Oh 0z

ob 8lh (Slz 81}

= u diag(f'(2))1

Useful Jacobians from previous slide

0 T . T

(9_u(u h)=~h

7 (7(2) = diag(f(2)
0

%(W:B +b)=1

3. Write out the Jacobians

s=u'h

h = f(z)
z=Wx+0b
x (input)

0s s Oh 0z

T

= u' diag(f'(2))I

= u' o f'(z)

Useful Jacobians from previous slide

0 T . T

(9_u(u h)=~h

7 (7(2) = diag(f(2)
0

%(W:B +b)=1

(O =Hadamard product =
element-wise multiplication

of 2 vectors to give vector

Re-using Computation

0s
* Suppose we now want to compute ——

ow

Using the chain rule again:

0s s Oh 0z
OW — 9h dz OW

Re-using Computation

0s
* Suppose we now want to compute ——

ow

* Using the chain rule again:

0s 0s Oh 0z

oW — Oh 0z OW
0s 0s Oh 0z

ob _ Oh 9z Ob

The same! Let’s avoid duplicated computation ...

Re-using Computation

° Suppose we now want to compute ;—‘;/_
Using the chain rule again:
ds 5 0z
oW OW
0s _ 0z _
ob 0b
~0soh L,
- Oh 0z u' o fi(2)

I 0 is the upstream gradient (“error signal”)
40

Derivative with respect to Matrix: Output shape

* What does ;—‘;/_ look like? W < RMxm

1 output, nminputs: 1 by nm Jacobian?
Inconvenient to then do ™€YY = QOld — CMV@ J(@)

Derivative with respect to Matrix: Output shape

* What does ;9_‘;‘9/ look like? W < RMxm

1 output, nm inputs: 1 by nm Jacobian?
* Inconvenient to then do §™ €Y = HOld — CMV@J(@)

* Instead, we leave pure math and use the shape convention:
the shape of the gradient is the shape of the parameters!

- 0s 0s -
Os oW1 T OWim

W is n by m:

0s 0s
_LOW .1 T oW .,
42

* So

Derivative with respect to Matrix

L ow T “ow

. 5 is going to be in our answer

The other term should be ¢ because 2 = WX -+ b

e Answer is: — 51T

ow

0 is upstream gradient (“error signal”) at z
x is local input signal

Why the Transposes?

(98 B T T
ow — %
nxm| [nx1][1xm)|
_51- _(51331
— [wla 7xm] —
5n _5n$1

* Hacky answer: this makes the dimensions work out!
e Useful trick for checking your work!
* Full explanation in the lecture notes
I * Each input goes to each output — you want to get outer product
44

5133?77,

0 Tom

Deriving local input gradient in backprop

or W IN OUr equa lon:
» 5% 56 Wx + b
ow ~aw =~ awWx b

* Let’s consider the derivative of a single weight W
* W, only contributes to z;

* For example: Wo5 is only
used to compute z, not z,

0% _ 0 W,.x + b;
oWy owy;

_ 9
AWy
45

ikXk = Xj

What shape should derivatives be?

* Similarly, %: h' o f'(z) is a row vector

* But shape convention says our gradient should be a column vector because b is
a column vector ...

* Disagreement between Jacobian form (which makes the chain rule
easy) and the shape convention (which makes implementing SGD easy)

* We expect answers in the assignment to follow the shape convention

* ButJacobian form is useful for computing the answers

I 46

What shape should derivatives be?

Two options for working through specific problems:

1. Use Jacobian form as much as possible, reshape to
follow the shape convention at the end:

s,
* What we just did. But at the end transpose 8—2 to make the

derivative a column vector, resulting in §7

2. Always follow the shape convention

* Look at dimensions to figure out when to transpose and/or
reorder terms

 The error message 6 that arrives at a hidden layer has the
same dimensionality as that hidden layer

I 47

3. Backpropagation

We've almost shown you backpropagation

It’s taking derivatives and using the (generalized, multivariate, or matrix)
chain rule

One more concept:

We re-use derivatives computed for higher layers in computing
derivatives for lower layers to minimize computation

I 48

Computation Graphs and Backpropagation

T
e Software represents our neural s=u"h
net equations as a graph h = f(z)
* Source nodes: inputs z=Wax+0b
* Interior nodes: operations I (input)

\ 4

T . (+) f
YT
|49 W b

Computation Graphs and Backpropagation

50

* Software represents our neural
net equations as a graph

* Source nodes: inputs
* Interior nodes: operations

* Edges pass along result of the
operation

s=u'h

h = f(z)
z=Wx+0b
x (input)

S

- N\Wz /70 2 f h
T
W b

N
7

u

Computation Graphs and Backpropagation

T
» Software represents our neural s=u h
net equations as a graph = f(2)

operation

w_(?w:::)@ = @ h)(.{)i
%4 b u

I 51

Backpropagation

* Then go backwards along edges s=u'h
Pass along gradients h = f(z)
z=Wx+b
x (input)
z h S
£ ° Wz >+) f) > o Y~
Js 0s 0s
0z oh 0s

Backpropagation: Single Node

* Node receives an “upstream gradient”

* Goalis to pass on the correct h=f(z)
“downstream gradient”

Z h

v

N
N

88 83
0z Oh
Downstream Upstream

gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h = f(z)
respect to its input

Z h

v

N
N

88 83
0z Oh
Downstream Local Upstream

gradient gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h = f(z)
respect to its input

h

v

pd
~

N

Chain | Os Os Oh 0s
rule! 192 9h 9z Oh
Downstream Local Upstream
55 gradient gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of its output with h = f(z)
respect to its input

 [downstream gradient] = [upstream gradient] x [local gradient]

Z h

v

N

ds ds Oh 9s
I 0z Oh 0z Oh

Downstream Local Upstream
gradient gradient gradient

Backpropagation: Single Node

What about nodes with multiple inputs?

|44

z=Wx

v

Backpropagation: Single Node

* Multiple inputs & multiple local gradients >~ = Wax

|%%4
(W z
OW 0z OW]
/ 0z
D5 _ 0502
oxr Oz Ox

Downstream Local Upstream
s gradients gradients gradient

An Example

f(z,y,2) = (x +y) max(y, z)
r=1,y=2,2=0

An Example f(x,y,2) = (z + y) max(y, 2)
r=1y=2,2=0

Forward prop steps

a=I+Y
b = max(y, z)
f=uab

L

\ 4

y *

An Example

Forward prop steps

a—=2x+tYy
b = max(y, 2)
f=uab

f(z,y,2) = (x +y) max(y, z)
r=1,y=2,2=0

\ 4

An Example f(x,y,2) = (z + y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa

@ T+ Yy ox oy

b = max(y, 2)

f=uab

X

\ 4

An Example f(x,y,2) = (z + y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy ox oy
b = max(y, z 9 _ _q 9 _
(yv) ay—l(y>z)— 5, = (z>y)=0
f=uab

X

\ 4

An Example f(x,y,2) = (z + y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy ox oy
— ob ob
b—maX(y,z) a—yzl(y>z):1 5:1(z>y)20
f=ab of of
L —p=9 L _,4=
da b ob a=3

X

\ 4

An Example f(x,y,2) = (z + y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy ox oy
— ob ob
b—maX(y,z) a—yzl(y>z):1 5:1(z>y)20
f=ab of of
L —p=9 L _,4=
da b ob a=3

X

An Example f(x,y,2) = (z + y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy ox oy
— ob ob
b=max(y,2) L-1p>2-1 F-16>y-0
f=ab of of
L —p=9 L _,4=
da b ob a=3
1
X
6 N
Y .

1*3=3

upstream * local = downstream

An Example f(x,y,2) = (z + y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy ox oy
— ob ob
b=max(y,2) 1D -1p>2-1 F-1>y -0
f=ab i 33
L —p=9 L _,4=
da b ob a=3
1
X
6 N
Y .

I < 3*0=0 upstream * local = downstream
67

An Example f(x,y,2) = (z + y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ T+ Yy ox oy
— ob ob
b—maX(y,z) a—yzl(y>z):1 5:1(z>y)20
f=ab of of
L —p=9 L _,4=
da b ob a=3

X

\ 4

3
> 0
0 upstream * local = downstream
68

An Example f(x,y,2) = (z + y) max(y, 2)
r=1y=2,2=0

Forward prop steps Local gradients
da Oa
@ :13+y ox oy
b = max(y, z b _ _q 9 _ _
(Y, 2) ay—l(y>z)—1 - =1(z>y) =0
Of da 0b
—Z —9 1
Ox T >
0
a—f:3+2:5 2
8?/ 2 6
or _o Y 2 1
0z 3
0
< 0
69

Gradients sum at outward branches

1
N
v

\

N

/
.

Gradients sum at outward branches

)

—

+

0O

a=I+Y
b=max(y,z) Of Ofda Of 0b
f =uab Oy dady Obdy

I 71

Node Intuitions f(z,y,2) = (x + y) max(y, 2)
r=1y=2,2=0

* + “distributes” the upstream gradient to each summand

N NN N -

Node Intuitions f(z,y,2) = (x + y) max(y, 2)
r=1y=2,2=0

* + “distributes” the upstream gradient to each summand

* max “routes” the upstream gradient

I
>
N
O W/N

Node Intuitions f(z,y,2) = (x + y) max(y, 2)
r=1y=2,2=0

* + “distributes” the upstream gradient
* max “routes” the upstream gradient

 * “switches” the upstream gradient

\ 4

Efficiency: compute all gradients at once

* Incorrect way of doing backprop: s=u'h
First compute % h = f(z)
z=Wx+b
x (input)
4 & 1T+ K < s B T P —
D

0b

Efficiency: compute all gradients at once

. T
* Incorrect way of doing backprop: s=u h
0 _
* First compute 8_8 h = f(z)
* Then independently compute z=Wx+b
W g (input)

* Duplicated computation! p

.’L‘ * | > + < f & > o <—;

Efficiency: compute all gradients at once

T
* Correct way: s=u"h
 Compute all the gradients at once h = f(z)
* Analogous to using 6 when we z=Wxz+b
computed gradients by hand T (input)
T » T + f (e T

W os b Os u
|

Back-Prop in General Computation Graph

1. Fprop: visit nodes in topological sort order
- Compute value of node given predecessors

2. Bprop:

- initialize output gradient =1

- visit nodes in reverse order:

Compute gradient wrt each node using

gradient wrt successors
{y1, Y2, ... Yn} =successors of

Single scalar output 2

Done correctly, big O() complexity of fprop and
bprop is the same

In general, our nets have regular layer-structure

and so we can use matrices and Jacobians...
78

Automatic Differentiation

* The gradient computation can be

automatically inferred from the symbolic
expression of the fprop

* Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output

 Modern DL frameworks (Tensorflow,
PyTorch, etc.) do backpropagation for
you but mainly leave layer/node writer
to hand-calculate the local derivative

Backprop Implementations

class ComputationalGraph(object):
Foaa
def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

80

Implementation: forward/backward API

y
(X,y,z are scalars)

class MultiplyGate(object):

def

def

forward(x,y):
z = xX*y

return z

backward(dz):
#dx = ... #tOd‘(\
dy = ... #todo

return [dx, dy]

N

OL
Ox

OL
0z

Implementation: forward/backward API

82

y
(X,y,z are scalars)

class MultiplyGate(object):

def

def

forward(x,y):

Z = X*y

self.x = x # must keep these around!
self.y =y

return z

backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

Manual Gradient checking: Numeric Gradient

flx+h)—flz—h)
2h

* Forsmall h (= 1le-4), f(z) ~
 Easy to implement correctly

* But approximate and very slow:

* You have to recompute f for every parameter of our model

* Useful for checking your implementation
* Inthe old days, we hand-wrote everything, doing this everywhere was the key test

* Now much less needed; you can use it to check layers are correctly implemented

83

Summary

(R B T
We’ve mastered the core technology of neural nets! & & &

* Backpropagation: recursively (and hence efficiently) apply the chain rule
along computation graph

 [downstream gradient] = [upstream gradient] x [local gradient]

* Forward pass: compute results of operations and save intermediate
values

 Backward pass: apply chain rule to compute gradients

84

Why learn all these details about gradients?

 Modern deep learning frameworks compute gradients for you!
e Come to the PyTorch introduction this Friday!

 But why take a class on compilers or systems when they are implemented for you?
* Understanding what is going on under the hood is useful!

* Backpropagation doesn’t always work perfectly out of the box
* Understanding why is crucial for debugging and improving models

* See Karpathy article (in syllabus):
* https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

 Example in future lecture: exploding and vanishing gradients

I 85

